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Abstract. Programming errors found early are the cheapest. Tools ap-
plying to the early stage of code development exist but either they suffer
from false positives (“noise”) or they require strong user interaction. We
propose to avoid this deficiency by defining a new class of errors. A pro-
gram fragment is doomed if its execution will inevitably fail, in whatever
state it is started. We use a formal verification method to identify such er-
rors fully automatically and, most significantly, without producing noise.
We report on preliminary experiments with a prototype tool.

1 Introduction

Software engineers agree on that bugs found early are the cheapest. Tools apply-
ing to this stage of development, however, usually suffer from false positives or
require strong user interaction. Perhaps the only “cheap” bugs are those found
by the compiler. Fixing them is cheap since they are fixed by the programmer
as they appear. We note that no programmer would doubt the relevance of a
compiling error in a program fragment because this is an error regardless of the
intended use of the program fragment, i.e., there is no way it can be dismissed
(there is no “noise”).

In this paper, we propose the definition of a class of program errors that
can be detected as early (i.e., for a possibly isolated program fragment), as
automatically (i.e., by a tool, without user input and without user interaction)
and as precisely (no noise) as, e.g., a missing semicolon.

We define that a program fragment is doomed if an execution that reaches
it will inevitably fail, i.e., executing the program fragment will never lead to a
normal termination of the program.

We present a formal verification method (on top of an existing static checker)
to identify such errors fully automatically and, most significantly, without pro-
ducing noise. We report on a prototype implementation on top of Boogie [2,4]
that can be used in combination with Spec# or VCC [6] to either analyze C#
or C programs. Preliminary experimental results indicate its practical potential.
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Related Work. We first want to point out that the class of errors our approach
finds is subsumed by almost every bug detection tool and that most tools will
find even more real bugs. However, the increased error detection rate comes
at a price: these tools either produce a lot of noise or they require heavy user
interaction. For instance, a set of unit tests that executes every statement in the
program at least once will detect all errors related to doomed program points
but one has to write or generate the test cases.

Our work can best be compared to Findbugs [1], which tries to find a rea-
sonable amount of bugs using different control and dataflow analysis approaches
while having in mind that flooding the user with false positives would ruin ev-
erything. With Findbugs, we share the idea of searching for contradictions in the
dataflow. For this purpose, Findbugs uses a special pattern detection mechanism
which is very fast but can miss errors and produce false positives. We give an
experimental comparison of our approach and Findbugs in Section 7.

Other static analysis tools like e.g., Splint [9] are less comparable since they
focus on finding as many bugs as possible and therefore produce noise or require
special code annotations.

The results produced by our tool could be reproduced using full fledged
automatic verifiers such as BLAST [12] by first trying to prove the program,
collecting all unverified assertions, negating them and rerunning the verification.
If the verifier is able to prove such a negated assertion then, the corresponding
statement will fail under any circumstances. However, this would be a rather
convoluted and costly way to find doomed program points. Also, tools such as
BLAST are meant to be applied to the whole program, i.e., at a rather late stage
of development when the errors we are targeting have probably already been
fixed.

From the algorithmic point of view, our approach is strongly related to ex-
tended static checkers such as ESC/Java [10] and modular program verifiers such
as Spec# [2,4]. While these tools issue warnings whenever they cannot prove
the absence of an error, as opposed to issuing warnings only for definite errors,
we share their approach of transforming the program and the idea of using pred-
icate transformers to obtain a representation that can be checked by a theorem
prover [17]. These tools use special annotations such as invariants to prove cer-
tain properties. For the purpose of error detection, though, these annotations are
not required. As we show later on, the user can still provide such information in
order to increase the error detection rate.

Proving the existence of bad states, as done by Riimmer and Shah [21], differs
from our approach in that they prove the existence of inputs for which something
bad might happen while a doomed program point guarantees that nothing good
can happen when reaching it. Their approach will find more errors, but requires a
specification of the desired inputs or will otherwise be imprecise. Doomed points
are errors regardless of the desired program behavior.

There is also previous work on refinement and noise reduction techniques for
existing error detection and verification approaches. That work has the effect of
reducing false positives, but we instead take a new approach.
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2 Examples

In the following, we present a collection of examples that demonstrate what
kinds of errors our approach is able to find and, more importantly, what kinds
of vulnerabilities it does not report.

Ezxample 1. Our first example is given in Figure 1. It demonstrates a trivial,
yet common error that can happen during development. In fact, the example is
inspired by an error that was found in an old version of Eclipse [14].

If our algorithm identifies an error in a program, then it will report not just
the statement that crashes, but also the statements that actually lead to the
crash. This provides additional hints to the developer that help him to fix the
error. If we apply our algorithm to the example program, then it will report
lines 5 and 6 as a guaranteed error. It reports line 6 because whenever the
expression *ptr is evaluated, this will cause a null pointer dereference. It further
reports line 5 because if the else branch of the conditional is taken, ptr==0 has
been evaluated to true, which guarantees the error in line 6.

1 |int getMin(int *a, int x) {
2 int i, j, temp;
1 |int access(int xptr) 3 for (i= x-1; i >= 0; i—) {
2 [{ 4 for (j= 15 j <= i; j++) {
3| if (ptr) 5 it (ali1] > alj]) {
4 xptr = 0; 6 temp = a[j—1];
5 else 7 alj—1] = a[j];
6 printf ("%d”, sptr);| 8 al[j] = temp;
7 9
8 return 0; 10 }
9 [} 1| }
12 return a[i];
13 |}

Fig. 1: TRIVIAL

Fig.2: Loop

Ezample 2. Our second example is less trivial, yet contains a common error.
The function getMin in Figure 2 returns the minimal element of an array. For
this purpose, it first sorts the array and then returns the first element. However,
there is a mistake in the loop bound of the for loop in line 3. The loop will
decrease the variable i until it has a negative value. This leads to an out-of-
bounds array access in line 12. Our algorithm detects that the out-of-bounds
access is inevitable. It reports lines 3 and 12 as what leads to the error. This is
the only warning emitted by our algorithm. Since there is no precondition saying
that array a is allocated and its size is given by x, any attempt to verify that the
procedure is safe without taking into account its calling context would generate
additional warnings of potential boundary errors.
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; /x Sorted tree x/ 12 | void update(Entry root,
3 |typedef voidx T; 13 int key, T dat) {
14 Entry x = root;
4 |typedef struct .
15 while (x—>key != key) {
5 entry *Entry; .
16 if (key < x—>key)
6 | struct entry
74 17 x = x—>left;
8 Entry left ; ig else_ —~right :
9 Entry right ; *x=x ghts
10 int key ; 20 }
Yo 21 x—>data = dat;
11 T data ; 22 |}
12 | };

Fig.3: COMPLEX

Ezample 3. Our last example demonstrates how the user of our tool benefits
from the fact that it detects guaranteed errors rather than arbitrary errors. The
program fragment in Figure 3 is taken from a library that implements a map data
structure using a sorted binary tree. The function update takes three parameters:
the root of the data structure, a key to an entry in the data structure, and a
data value. It then traverses the tree to find the entry for the given key and
updates the data value associated with this key. The function works correctly if
the calling context guarantees that there is already an entry for the given key
in the data structure. If this assumption is violated, the function crashes. Note
that there is no null pointer check that guards the dereference of variable x in
the while condition at line 16. The fact that there is an entry for the given key
guarantees that x is not null.

It is a real challenge for any bug finding tool to prove that line 15 does
not cause a null pointer dereference and, thus, not report this line as a potential
error. For extended static checking or a modular program verifier, the user needs
to specify the precondition saying that there exists an entry in the tree for
the given key. However, this is not sufficient to prove the absence of a null
pointer dereference. The user further needs to specify a data structure invariant
that expresses the fact that the tree is sorted. This information is required in
the loop invariant of the while loop. Even if all necessary specifications are
given, automatically proving that the loop invariant implies the absence of null
pointer dereferences is still tricky. Extended static checkers use theorem provers
to automate this task. The theorem prover needs to conclude from the sortedness
property and the existence of an entry for the given key that this entry is located
in the subtree that the while loop traverses into. Modern theorem provers still
require proof hints from the user to accomplish such proofs. All these tasks are
time consuming and require the expertise of a verification engineer.

If, on the other hand, one attempts to use abstraction based program analyses
to automatically infer the necessary preconditions, then only the use of a very
sophisticated shape analysis would leave any hope for success. However, such
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analyses are expensive and do not yet scale well to large programs. Using them
online while coding is unrealistic.

In contrast, our algorithm will not report any errors, simply because there
exist executions that never dereference any null pointers.

3 Doomed Program Points

We now formally define the new class of errors that we consider in this paper.

In order to abstract away from the details of a concrete programming lan-
guage, we only assume that a program defines a set of possibly infinite executions
(sequences of states).

We assume that executions are divided into two types: admissible executions
and inadmissible executions. An execution is inadmissible if it causes some un-
desirable behavior; in particular, it is inadmissible if it diverges or violates an
assertion. Syntactically, we only assume that a program comes with a finite set
of program points.

Each state in an execution belongs to a unique program point. We say that an
execution passes through a program point £ if one of its states belongs to £.

Definition 1. A program point £ is called doomed if all executions that pass
through ¢ are inadmissible.

In particular, a program containing a doomed program point has an inad-
missible execution, or no execution passes through it (i.e., it is part of dead
code). Once a doomed program point is reached in an execution, this execution
is guaranteed to fail. In this sense, doomed program points are the witnesses of
guaranteed errors.

We define the problem of error verification as the problem of identifying all
doomed program points in a given program. We say that an algorithm for this
problem is sound if, for any given program, it identifies only doomed program
points. We say that it is complete if it identifies all doomed program points.

4 Preliminaries

We define our algorithm with respect to a subset of the BOOGIE language [2,18].
BOOGIE is an intermediate verification language designed for program analysis.
It provides a small set of control constructs that, yet, allows the encoding of
full-fledged programming languages such as C, C#, and Java (see, e.g., [2,5,6]).

The syntax of our simple language is defined in Figure 4. A program consists
of a sequence of blocks. Each block consists of a unique program point, a sequen-
tial statement, and a goto statement that connects the block with a non-empty
set of successor blocks. The atomic statements of our language are assignments,
non-deterministic assignments (havoc) of program variables, assert statements,
and assume statements. We do not specify the concrete syntax of expressions
that are used in these statements. In principle, they can be arbitrarily complex
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Program ::= Block™
Block ::= PPId: Stmt; goto PPId"
Stmt ::= Varld := Ezpr | havoc Varld"
| assert Ezpr | assume Expr
| Stmt; Stmt

Fig. 4: Simple Language

logical formulae. Each block either has a transition to other blocks or goes to a
unique program point called Term which means that the program has terminated
normally.

A program state is a valuation of the program variables and a program
counter that evaluates to a program point id. A program gives rise to a set
of executions. An execution consists of a sequence of states describing the suc-
cessive execution of the program blocks starting from some block in the program.
An execution terminates normally if it reaches the block Term, it ends in an er-
ror if an assert in some block evaluates to false, and it is infinite if the program
does not terminate. A sequence of states where an assume in a block evaluates
to false models an infeasible computation. The admissible executions are the
feasible executions that terminate normally.

If we translate a real program into our simple language, we can model ar-
rays and the program’s heap using function-valued program variables that map
indices or memory addresses to values. The concrete representation of the heap
depends on the semantics of the translated language. For example, one way to
model a Java-like language is to use a function-valued program variable per field
in a class; other possible memory models are discussed, e.g., in [6,16,18,19]. For
brevity of exposition, our simple language does not support procedures (although
BOOGIE does).

5 Error Verification Algorithm

Outline. We now give the outline of our algorithm for error verification. It is
implemented by the procedure Exorcise given in Figure 5. Procedure Exorcise
takes a program as input and returns a set of doomed program points. The
procedure first transforms the input program P into a program P’ in loop-free
passive form. This means, that (1) program P’ has no cycle in the graph formed
by its blocks and goto statements and (2) blocks in P’ consist only of assume and
assert statements. The transformation is such that the set of doomed program
points in P’ is a subset of the set of doomed program points of P.

After the transformation, procedure Exorcise iterates over all program points
in program P’. For each program point ¢, it generates a logical formula EVC(¢, P').
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proc Exorcise(P : program)
var Doomed : set of doomed program points
var P’ : program
var ¢ : formula

begin
P’ := Transform(P)
for each program point £ in P’ do
= EVC(, P")
if Valid(¢) then
add ¢ to Doomed
od
return Doomed
end

Fig. 5: Error verification algorithm

We call EVC(¢, P') an error verification condition. The error verification condi-
tion is valid if and only if program point £ is doomed in P’. The procedure then
calls the subroutine Valid, which checks whether the error verification condition
is valid. We assume that Valid is a sound test for logical validity, e.g., imple-
mented by a theorem prover. If the error verification condition is valid, then the
program point £ is added to the set of doomed program points.

For exposition purposes, we will present simplified versions of subroutines
Transform and EVC, and argue that procedure Exorcise is sound. Afterwards, we
discuss improvements of these subroutines that are crucial for scalability of the
algorithm and increased error detection rate.

Program transformation. In the following, we describe a simple version of sub-
routine Transform that transforms a program into loop-free passive form [3,11].
Note that the transformation described below is by now standard and is used in
several extended static checkers and program verifiers (e.g.,, [2,10]). We therefore
provide only a brief description. For a more detailed discussion, see [3].

The first step in Transform(P) is to transform program P into a loop-free
program. We now think of our program P as a control flow graph where each
block is a single node labeled with the program point associated with the block.
We assume that each cycle in the graph has a unique entry point, the loop header
(if not, one can first apply node splitting, see e.g., [15]). Edges from nodes inside
a cycle back to the loop header are called back edges. We assume without loss of
generality that a loop header is a block that consists of just one goto statement
that either goes to the first block of the loop body or skips the loop, jumping to
a block that we call the loop exit. The variables that are modified by a statement
in the loop are called loop targets. We can now over-approximate any number of
loop iterations as follows: first, wipe out all information about the loop targets
by inserting appropriate havoc statements on entry to the loop body; then,
replace each back edge of the loop with an edge to the loop exit. We can think
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of this transformation as eliminating loops using trivial loop invariants. In fact,
if the user or some preceding analysis provides loop invariants, they can be
incorporated into the transformation to increase precision (see [3]).

Once our program is loop free, procedure Transform(P) transforms it to pas-
sive form. First, we apply a single assignment transformation [7] where auxil-
iary variables are introduced to ensure that each program variable is assigned at
most once per execution path [11]. The general idea is to replace each read of a
variable by the auxiliary variable that represents its value at that point in the
program, and to introduce a new auxiliary variable for every write. For example,
an assignment x := x + 1 may be transformed into xy11 := z + 1, where k is
some sequence number (see [3,11] for details). Second, since no assignment of
an auxiliary variable is preceded by a use of that variable, we can replace each
assignment xj, := e by an assume statement assume(zy = e).

The following proposition states soundness of the transformation into loop-
free passive form.

Proposition 1. For any program P, the set of doomed program points of pro-
gram Transform(P) is a subset of the doomed program points of program P.

The proof relies on the fact that the program obtained from loop elimination
preserves all admissible executions of the original program. Furthermore, there is
a mapping from executions of the loop-free program to executions of the passive
program that preserves admissibility.

Error Verification Conditions. We now describe how we generate an error veri-
fication condition for a given program point in a loop-free passive program.

Recall that the weakest precondition wp.S.Q of a statement S with respect
to predicate () describes the pre-states of S from which every execution of S
terminates normally in a state satisfying @ [8]. Thus, if the weakest precondition
wp.S.true is universally valid, then all executions of statement S are admissible.
Therefore, weakest preconditions are used for generating verification conditions
that prove program correctness.

We can use a similar approach to check for doomed program points. The
weakest liberal precondition of a statement S with respect to a predicate
describes the pre-states of S from which every terminating execution of S ends in
Q [8]. Thus, wip.S.false is the set of all states such that any normally terminating
execution of S ends in a state satisfying false, which means that there are no
executions of S that terminate normally. Thus, weakest liberal preconditions
allow us to precisely characterize statements with guaranteed errors.

Proposition 2. Let S be a passive loop-free program. If wlp.S.false is univer-
sally valid, then all executions of S are inadmissible.

The proof of Proposition 2 goes by structural induction over S using the
predicate transformer semantics of passive loop-free programs from [20] that
is given in Table 1. Hereby, the statement S [0 7T stands for non-deterministic
choice between statements S and T'. Since our program is in passive form, the
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Stmgt ‘ wp.Stmt.Q ‘ wlp.Stmt.Q
assert F ENQ F = Q
assume F E = Q E = Q

S;T wp. S (wp.T.Q) | wip.S.(wlp.T.Q)
ST  |wp.S.Q AN wp. T.Qlwlp.S.Q N wlp.T.Q

Table 1: Semantics of predicate transformers

statements of the program do not affect the program state. The only effect of a
passive statement is to choose whether the execution is admissible. As described
in [11], this allows us to capture the semantics of a passive program in terms of so
called outcome predicates. Given a statement S, the predicate N.S denotes the
pre-states of S from which the execution of S may be admissible, while predicate
W.S denotes the pre-states from which the execution of S may be inadmissible.
The formal semantics of these two outcome predicates is given in Table 2. Using

Stmt | N.Stmt | W.Stmt
assert F E -F
assume F E false

S;T |N.SAN.T|W.SV(N.SAW.T)
SOT |N.SVNT| W.SvW.T

Table 2: Semantics of outcome predicates

these outcome predicates, it is shown in [17] that weakest preconditions can be
characterized as

wp.S.Q = ~(WISA(NS = Q) .

Similarly, we can characterize weakest liberal preconditions as follows.

Proposition 3. Let S be a program in passive form and @Q a predicate. Then
the following equivalence holds:

wlp.5.Q = (N.S = Q) .

The size of predicate N.S is linear in the size of statement S. We can, thus,
conclude that the size of the weakest liberal precondition wip.S.false is also linear
in S. In contrast, the weakest precondition is worst-case quadratic.

For a program point £ in a loop-free passive program P we denote by st(¢, P)
the statement that corresponds to the subprogram following this program point.
The statement st(¢, P) can be computed from the control-flow structure of the
program as follows: given the block

{: S;gotoly,... 0,
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for a program point ¢ in P, the corresponding statement st(¢, P) is defined
recursively as
st(¢, P) = S;(st(¢y, P)O---Ost(ly, P)) .

For the terminating program point Term, the statement st(Term,P) is the
empty statement. Since program P is loop-free, statement st (¢, P) is well-defined
for all program points.

We can now define the error verification condition EVC(¢, P) as follows:

EVC(¢, P) = wip.st(¢, P).false .

Hereby, wip.st(¢, P) is computed according to Proposition 3. From Proposition 2
we conclude that error verification condition generation is sound.

Proposition 4. Let P be a program in loop-free passive form and £ a program
point in P. Then, £ is doomed if the error verification condition EVC(¢, P) is
valid.

Soundness. From Proposition 1 and 4 we can now conclude the soundness of our
algorithm.

Theorem 1. Procedure Exorcise is a sound algorithm for the error verification
problem.

Avoiding exponential blow-up. The weakest liberal precondition for statement
st(¢, P) and a predicate @) can be computed recursively as follows:

wlp.st(¢y, P).Q
wip.st(¢, P).Q = wip.S. | A ... (1)
A wip.st(y,, P).Q

However, there is a crucial problem when one computes wip.st(¢, P).false
using Equation 1. If a program point ¢’ is reachable from ¢ then wlip.st(¢', P).false
occurs as a subformula in wip.st(¢, P).false as many times as there are paths in
the control-flow graph from £ to ¢'. This can lead to an exponential blow-up in
the size of the resulting verification condition. We follow the idea of [3] and [17]
and avoid this blow-up by defining Equation 1 in the underlying logic. For this
purpose, we introduce auxiliary Boolean variables By for wip.st(¢, P).false and
build the formula

Fpaey : /\ (By = wlp.S.(Byy A-++ A By,,)
tep

A (BTerm = false)

Using this definition we redefine our EVC as follows.

EVC((, P) = Fpaey = —By.
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6 Extended EVC Generation

Until now, our algorithm only detects errors that occur in every path that starts
in a program point £. Code that precedes the program point is not taken into
account when checking EVC(¢, P). An example is given in Figure 6. The program
point in line 3 is doomed, since the value of i is never a valid pointer at this
program point. To prove this, one needs to consider the assignment in line 1. It is
not enough to just consider every conditional block by itself. We detect program
points in conditional blocks by introducing a new variable R, that indicates that
the block By was reached. The variable is initially false; an assignment that sets
the variable to true is added to the block and we change the post-condition from
false to Ry = false.

Fig. 6: PATHPROG

We introduce all reachability variables at the same time but set only one
Ry to false in the precondition. Thus, we do the following transformation of
the program (before passifying the program). The Block ¢ : S;goto¢y,..., ¢, is
transformed to

£: Ry :=true; S;gotoly,... .0,

and in the block Term we add the assertion

assert( /\ Ry)
LeP

We compute Fpger for this annotated program as described in the previous
section.

We now redefine our EVC. To check if there is a doomed program point in
block By we check the validity of

EVC((, P) = =Ry A Fpae; = —Bstart -

Proposition 5. Let P be a program in loop-free passive form and ¢ a program
point in P. Then, £ is doomed if and only if the error verification condition
EVC(¢, P) is valid.

As for the weaker Proposition 4, we can conclude from Proposition 1 and 5,
that our algorithm is sound.
Completeness. Our algorithm is not complete for unrestricted programs because
the error verification problem is in general undecidable*. However, if we start

4 An instance of the error verification problem is to decide whether a given program
never terminates.
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from a loop-free program then the algorithm is complete under the assumption
that the generated verification conditions are expressible in some logical theory
for which validity checking is decidable.

Faster Theorem Prover Interaction. Instead of checking validity of EVC, we check
the unsatisfiability of its negation

_‘RE A FBdef A Bstart .

Since the part Fpger A Bstar+ does not change, we can push it as axiom and
then just check unsatisfiability of =R, for each Block By. This way the theorem
prover has to parse the main part of the verification condition only once and can
reuse lemmas that are derived from this formula.

7 Implementation and Experiments

We have built a prototype implementation of algorithm Exorcise on top of Boo-
gie [2] and applied it to a C# version of the Findbugs Null Pointer Microbench-
mark [13] and the examples in Figures 1, 2, and 3. For our prototype, we have
used heuristics for dealing with loops and function calls. We describe these
heuristics in the following.

Loops: In order to increase detection rate we unroll each loop body three times.
One unrolling for the first, the last, and an arbitrary iteration. For the arbitrary
iteration, we set all variables modified inside the loop body to havoc at the
beginning and at the end of the unrolled iteration. The back edges of the original
loop are replaced. For the first iteration, the back edges are changed to the first
block of the arbitrary and the last iteration. For the arbitrary iteration, the
back edge is changed to the last iteration. The last iteration will always leave
the loop. This simple unrolling allows us e.g., to find doomed program points
caused by iteration across array bounds as in Figure 2 as well as simple cases of
non-termination where an iterator is not iterated inside the loop body.

By unrolling the first and last iteration, we might have introduced unreach-
able control flow (e.g., there is a condition in the loop body that is satisfied only
in the third iteration). We are not allowed to check these program points since
they might be false positives. Thus we only check the first block of the unrolled
iterations. Most guaranteed errors inside the loop body will propagate to this
point.

Function Calls: We handle functions calls by simple inlining. As for loops, we
have to be careful that we do not introduce additional control flow paths. Thus,
we check only the first block of an inlined function.

Obviously, inlining will not scale, since we still have to check all functions
separately. Therefore, we inline only up to a certain depth and use trivial con-
tracts for any further calls. So far, we have experienced that this is not as bad
as it would seem, since doomed program points tend to have a local scope, i.e.,
in practice there are only few guaranteed errors that involve multiple function
calls.
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Ezxperiments: The results of our experiments are shown in Table 3. The result
columns show whether the respective tool detects an existing error (true posi-
tive), a non-existing error (false positive), misses an error (false negative), or does
not produce a warning on correct code (true negative). The benchmark contains

Exorcise Findbugs [13] Spec# [2]
program |incorrect?|time (in ms)[ result result|{time (in mb)[ result
fp1 no 156 |true neg true neg 39| true neg
tpl yes 171|true pos false neg 27| true pos
fp2 no 160|true neg true neg 35| true neg
tp2 yes 160|true pos false neg 27| true pos
fp3 no 175|true neg true neg 50 true neg
tp3 yes 187.5|true pos true pos 58.5| true pos
tp4 yes 109.2|true pos true pos 35| true pos
fp4 no 171|true neg true neg 43| true neg
tpd yes 152|true pos true pos 15.5| true pos
tp6 yes 144|true pos true pos 31| true pos
itpl yes 109.2|true pos false neg 15.6| false neg
ifpl no 93.6|true neg true neg 46.8| true neg
itp2 yes 15.6|true pos true pos 0| false neg
itp3 yes 46.8|true pos true pos 15.6| false neg
TRIVIAL yes 179.5|true pos true pos 54.5| true pos
Loopr yes 699|true pos false neg 129| true pos,

3 false pos
COMPLEX no 246|true neg true neg 43|2 false pos
[Total Time] [ 3.2 | 453s ] 0.67 s |

Table 3: Comparison of Exorcise, Findbugs and Spec# on the Findbugs Null
Pointer Micro Benchmark and the example from Figures 1, 2, and 3. The columns
list the analyzed function, whether it contains a bug, the running time and
result of Exorcise, the result of Findbugs, and running time and result of Spec#.
Results can either be true positives if an error is found, true negatives if no error
is reported on correct programs, false positives if a non-existing error is reported,
or false negatives if an existing error is overlooked.

nine functions with one null pointer error and five without. Our algorithm is able
to detect all nine null pointer errors without producing false positives. Findbugs
misses three errors, but does not produce false positives either. Spec# misses
true positives and produces false positives if no further information is provided.
More benchmarks on the Findbugs Null Pointer Micro Benchmark can be found
in [13].

All benchmarks were executed several times on a 2.4 GHz machine with
2 GB of RAM running Windows XP. Our approach is slower than Spec#. While
Spec# checks each function once, our tool has to check each block of a function
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separately in the worst case. We are working on optimizations concerning the
size and construction of the formula and the interaction with the theorem prover,
but for the worst case our algorithm will always be slower than Spec#.

The times measured for Findbugs are not directly comparable to those for
our analysis, since Findbugs computes many pieces of additional information.
For larger programs, Findbugs should be faster than Spec# and Exorcise, but so
far we have not found a good benchmark that is available in both C# and Java.

The big bottleneck of this approach is that our algorithm has to check for
each block if it contains a doomed program point. Using the insight that a block
that has only one successor will be doomed if the successor is doomed, we can
reduce the number of checked blocks. Furthermore, using the optimization from
the previous section, we observe that the theorem prover, after checking the first
block, can reuse large parts of its work for the remaining blocks. Table 4 shows
how much time our implementation spends on constructing the EVC, checking
the first block, and checking all further blocks. Looking at e.g., the function
Loopr, we observe that the time spent on checking all blocks but the first one is
less then checking the first block.

[program [# queries|EVC construction (ms)[1st block (ms)[avg ms/block]

tpl 5 17 134 2
TRIVIAL 3 17 150 2
Loor 7 62 391 23
COMPLEX 5 18 166 5

Table 4: Number of total blocks checked and the time (in ms) consumed for
constructing the EVC, checking the first block, and the average time for all
further blocks.

8 Conclusion

The main contribution of this work is the idea of error verification and the
demonstration that this idea can be realized in practice. We have shown that
error verification can easily be integrated in extended static checkers or program
verifiers that provide the infrastructure for generating verification conditions and
automatic theorem provers to check them. We therefore believe that this idea can
now be adopted and extended by many others. We see a huge potential in this
work as this can be a formal method which is applicable by every programmer.
Using the fact that it can be built on top of e.g., Spec#, it also allows the
programmer to annotate his program using e.g., pre- and postconditions to see
if certain properties are always violated. This allows a smooth learning curve
towards the use of full program verification.
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We see much room for further improvements of our method. For instance,
we want to optimize error verification by developing specialized techniques for
finding correct executions, so that error verification conditions are quickly rec-
ognized as invalid. Doomed program points are sparse; i.e., almost all generated
error verification conditions are not valid in practice (this is in contrast with the
usual verification conditions, for correctness). Every programmer’s experience
confirms the intuition that it is easier to find a correct execution (for a program
fragment that has no guaranteed error) than to find an incorrect one (for a pro-
gram fragment that may lead to an error). This gives an interesting potential
for optimization.

Maybe the best reason to use our approach is that there is no argument
against it: our method is fully automatic and it remains invisible to the user as
long as no doomed program point is found. If a warning is emitted, then this is
a definite indication that the program is incorrect.
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