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Abstract. Already in Lamport’s bakery algorithm, integers are used
for fair schedulers of concurrent processes. In this paper, we present the
extension of a fair scheduler from ‘static control’ (the number of processes
is fixed) to ‘dynamic control’ (the number of processes changes during
execution). We believe that our results shed new light on the concept of
fairness in the setting of dynamic control.

1 Introduction

In Lamport’s bakery algorithm [8], integers are used to express the urgency to
schedule a process (the goal being to prevent the starvation of each single process
by ensuring fairness). The same basic idea, though in a different realization,
underlies the explicit fair scheduler of [10]. Here, the urgency to schedule a
process is expressed by a possibly negative integer. The urgency increases (and
the integer value decreases) if the process is enabled and not taken. The non-
starvation of the process apparently relies on a lower-bound invariant: the value
cannot decrease below —n if n is the number of all processes. This lower bound
becomes void when we move from ‘static control’ (the number of processes is
fixed) to ‘dynamic control’ (the number of processes changes during execution).
Indeed, the first contribution of this paper is to show that the scheduler of [10]
does not ensure fairness for dynamic control; in our counterexample a process
starves in an execution where it is enabled in every second step; each time when
it is enabled again, its urgency has already been overtaken by some new process.
This negative result opens the problem of the existence of a fair scheduler for
dynamic control. We present two solutions.

The main contribution of this paper is a fair scheduler for dynamic control.
The originality of this scheduler lies in a heresy. We deviate from the generally ac-
cepted believe that the non-starvation of a process relies on the well-foundedness
of the corresponding sequence of integer values.

The third contribution of this paper is a different kind of fair scheduler for
dynamic control. The originality of our second solution to the problem lies again
in a heresy. We reformulate the problem. By dropping one of the conditions in the
original definition of a fair scheduler, we arrive at a weaker notion of a scheduler
(a “monitor”). The difference between a scheduler and a monitor lies in the fact
that a ‘monitored’ execution may block. Each infinite ‘monitored’ execution is
fair; in comparison, each ‘scheduled’ execution is infinite and fair. In the context
of verification based on the automata-theoretic approach of Vardi-Wolper [15],
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where one checks for the existence of infinite fair executions, the weaker notion
of a monitor is sufficient.

In the remainder of the paper, we will present the results described above,
along with a thorough investigation of a number of annexed questions. We believe
that our results provide a new understanding of fairness in the context of dynamic
control.

Why use explicit scheduling. There may be situations where one would like
to “get rid of fairness”. For example, in program analysis (whose formal foun-
dation can be given by abstract interpretation [5]), one may want to define the
semantics in terms of a (pure) transition system, i.e., a graph. Here, a popular
approach is to take one of the fair schedulers used in operating systems, and to
consider a new system which is composed of the original one and the scheduler,
and whose semantics can be given in terms of a transition system. The objec-
tion to this approach is that the analysis result is valid only for one particular
fair scheduler; i.e., it does not extend to another fair scheduler. To remove this
objection, one has to take a universal scheduler, i.e., one that encompasses all
possible fair schedulers. In contrast with schedulers implemented in operating
systems, a universal scheduler is not meant to be practical. Universality holds if
the scheduler is sufficiently permissive, i.e., if every possible fair execution can
be scheduled (by letting the scheduler choose an appropriate sequence of alter-
natives at all non-deterministic choices). In order to be correct (sound), it must
not be too permissive, i.e., no unfair execution can be scheduled.

Motivation of our work. Our interest for fairness in the setting of dynamic
control stems from three directions.

Networked transportation systems (e.g., cars driving in groups called pla-
toons) are modeled as concurrent systems (see, e.g., [2]). The fact that a traffic
participant can appear and join a platoon is modeled by the creation of a new
concurrent process. Fairness needs to be added as an assumption for the model
for the validity of liveness properties (e.g., the termination of a merge manoeuvre
between platoons).

Operating systems are typical examples of reactive systems where threads
are created specifically for individual tasks. Although the execution of the over-
all system may be infinite, those threads must terminate in order to keep the
overall system reactive. For recent automatic proof techniques addressing the
termination of such threads see [13,14,12,4]. All these techniques are specifically
designed to cope with fairness. Presently, however, they are restricted to the
setting of static control, i.e., to the setting where the number of processes is
statically fixed.

Perhaps surprisingly, recent work on model checking safety properties of op-
erating systems code involve fairness [9]. Fairness is used essentially to eliminate
useless (unfair) paths in the state space (i.e., paths that can be pruned without
affecting the reachability of error states). This work uses explicit scheduling of
the model checker for the “fair” exploration of the state space. Although the
explicit scheduler in [9] is inspired by [10], it chooses a different idea for the
representation of the relative urgency of processors.
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Roadmap. In Section 2 we state the definitions on which we build in this
paper. We formulate the classical notion of (strong) fairness not for Dijkstra’s
guarded command programs but, instead, for infinitary guarded command pro-
grams, i.e., with infinitely many branches in the do loops. These programs for-
malize the setting of infinitary control where infinitely many processes can be
active at the same moment. In dynamic control only finitely many processes
can be active at each moment. Then we adapt the notion of explicit schedul-
ing and the specific scheduler for (strong) fairness from [10], which we call here
Sgs to the setting of infinitary control. In Section 3 we show that Sgg is not
valid for dynamic control. In the following we present two solutions to overcome
this problem. In Section 4 we present a new scheduler Syy that is valid for dy-
namic control. In Section 5 we give up the requirement for a scheduler that the
transition relation is total and introduce a monitor Mgg derived from Sgg. This
monitor is also valid for dynamic control. In Section 6 we investigate which of
the previous results remains true in the setting of infinitary control. Section 7
concludes this paper.

2 Definitions

Though the motivation for considering fairness stems from concurrency, it is
easier and more elegant to study it in terms of structured nondeterministic pro-
grams such as Dijkstra’s guarded commands [7]. We follow this approach in this
paper. In this section, we carry the classical definitions of fairness from Dijkstra’s
guarded command language over to an infinitary guarded command language,
i.e., with infinitely many branches in do loops. It is perhaps a surprise that
the definitions carry over directly. We then immediately have the definitions of
fairness of programs with dynamically created processes because we will define
those formally as a subclass of infinitary guarded command programs.

2.1 Dynamic Control

Our goal is a minimalistic model that allows us the study of fairness for programs
with dynamically created processes. As a starting point we introduce programs
with infinitary control by extending Dijkstra’s language of guarded command
programs [6] with do loops that have infinitely many branches. Syntactically,
these do loops are statements of the form

S=do |2, Bi— S; od (1)

where for each i € N the component B; — S; consists of a Boolean expression B;,
its guard, and the statement S;, its command. Therefore a component B; — .5;
is called a guarded command and S is called an infinitary guarded command.
We define the class of programs with dynamic control as a subclass of pro-
grams with infinitary control. At each moment each of the infinitely many pro-
cesses “exists” (whether is has been created or not). Each process is modeled by
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a branch in the infinitary do loop. However, at each moment, only finitely many
processes have been created (or activated or allocated). All others are dormant.

Processes are referred to by natural numbers. The process (with number) 7 is
represented by the guarded command B; — S;. To model processes creation we
use a Boolean expression cr; for each process ¢ such that this process is considered
as being created if cr; evaluates to true. All other processes are treated as not
being created yet. It is an important assumption that a created process can
disappear but not reappear, i.e., once the value of the expression cr; has changed
from true to false it cannot go back to true.

We define a structural operational semantics in the sense of Plotkin [11] for
infinitary guarded commands. As usual, it is defined in terms of transitions be-
tween configurations. A configuration K is a pair <.S, o> consisting a statement
S that is to be executed and a state o that assigns a value to each program
variable. A transition is written as a step K — K’ between configurations. To
express termination we use the empty statement F: a configuration <FE, o> de-
notes termination in the state o. For a Boolean expression B we write o = B
if B evaluates to true in the state o. Process i is created in a state o if o = cr;
and it is enabled in state o if it is created and its guard B; evaluates to true,
formally, o = cr; A B;.

For the infinitary do loop S as in (1) we have two cases of transitions:

1. <8,0>— <S;;5,0> if o= cr; AB; for each i € N,
2. <S,0>—<E,0> if o= A2, —(cri A B;).

Case 1 states that each enabled component B; — S; of S, i.e., with both the
expression cr; and the guard B; evaluating to true in the current state o, can be
entered. If more than one component of S is enabled, one of them will be chosen
nondeterministically. The successor configuration <.5;;5, 0> formalizes the rep-
etition of the do loop: once the command S; is executed the whole loop S has to
be executed again. Formally, the transitions of the configuration <S;;S, o> are
determined by the transition rules for the other statements of the guarded com-
mand language. For further details see, e.g., [1]. Case 2 states that the do loop
terminates if none of the components is enabled any more, i.e, if all expressions
cr; A\ B; evaluate to false in the state o.

In this paper we investigate programs with only one infinitary do loop S
of the form (1). This simplifies its definition of fairness and is sufficient for
modeling dynamic control. An ezecution of S starting in a state o is a sequence
of transitions

K()%Kl*)KQ‘)..., (2)

with Ky = <5, 009> as the initial configuration, which is either infinite or maxi-
mally finite, i.e., the sequence cannot be extended further by some transition.

Consider a program S of the form (1). Then for S having infinitary control
there is no further requirement on the set of created processes. A program S has
dynamic control if for every execution (2) of S the set of created processes is
finite in every state of a configuration in (2).
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A program S has bounded control if for every execution (2) there exists some
n € N such that the number of created processes is bounded by n in every state
of a configuration in (2). A program S has static control if there is a fixed finite
set F' of processes such that for every execution (2) the set of created processes
is contained in F' in every state of a configuration in (2).

Note that we have the following hierarchy: programs with static control are
a special case of programs with bounded control, which are a special case of
programs with dynamic control, which in turn are a special case of programs
with infinitary control.

2.2 Fairness

In this paper we extend the definition of fairness® of [10] from programs with
static control to programs with process creation and infinitary control. Since
fairness can be expressed in terms of created, enabled, and selected processes
only, we abstract from all other details in executions and define it on runs.

We now fix an execution as in (2) and define the corresponding run. A tran-
sition K; — K41 with j € N is a select transition if it consists of the selection
of an enabled process of S, formally, if K; = <S,0> and K11 = <5;;5,0>
with o = ¢r; A B; for some i € N, so process i has been selected for execution in
this transition. We define the selection of the transition K; — K as the triple
(Cy, Ej,1;), where Cj is the set of all created processes, i.e.,

Cj={ieN|ok er),
and E; is the subset of all enabled processes, i.e.,
E;={ieCj|okE= B},

and ¢; is the (index of the) selected process, i.e., i; = i. Obviously, the selected
command is among the enabled components. A run of the execution (2) is the
sequence of all its selections, formally, the sequence

(Cjoﬂ Ejoa ijo)(Cj17Ej1’ijl)' .

such that C;,C}y, ... is the subsequence of configurations with outgoing select
transitions. Computations that do not pass through any select transition yield
the empty run. A run of a program S is the run of one of its executions.

A run

(Co, Eo,i0)(C1, E1,i1)(Ca, Ea, ia). . . (3)
is called fair if it satisfies the condition
VieN:(OﬁjeN:ieEjéoﬁjeN:i:ij).

3 In the literature, this notion of fairness is qualified as strong fairness (or compassion).
For brevity, we simply refer to this notion without the qualifier in this paper.
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oo
where the quantifier 3 denotes “there exist infinitely many”. By our assump-
tion (see Subsection 2.1), the fact that the process 7 is infinitely often enabled,

formally OEloj € N:i € Ej, implies by E; C C; that process ¢ is created at some
moment and stays created forever, formally 3jo € N Vj > jo : ¢ € Cj.

In a fair run, every process ¢ which is enabled infinitely often, is selected
infinitely often. Note that every finite run is trivially fair. An ezecution of a
program S of the form (1) is fair if its run is fair. Thus for fairness only select
transitions are relevant; transitions inside the commands S; of S do not matter.
Again, every finite execution is trivially fair. Thus we concentrate on infinite
executions throughout this paper.

Although we are not interested in the case where infinitely many processes
can be enabled at the same time (continuously or infinitely often) and although
this case is perhaps not practically relevant, the definition of fairness still makes
sense, i.e., there exist fair executions in this case.

2.3 Explicit Scheduling

We extend the definition of a scheduler from [10] to the setting of infinitary
control. In a given state o the scheduler inputs a set C' of created processes
and a subset ¥ C C of enabled processes. It outputs some process i € E and
transitions to a new state o’. We require that the scheduler is totally defined,
i.e., for every scheduler state and every input set E the scheduler will produce
an output ¢ € E and update its scheduler state. Thus a scheduler can never
block the execution of a program but only influence its direction. Summarizing,
we arrive at the following definition.

Definition 1 ([10]). A scheduler is a triple S = (X, Xy, 0), where

— XY is a set of states with typical element o,
— Yo C X is the set of initial states, and
— J is a transition relation of the form

SCEx2Mx2Nx Nx ¥
which is total in the following sense:
Vo e XVC e 2NVE €29\ {0} 3ic E3o’' € X : (0,C,E,i,0') €4.

Thus for every state o, every set C of created processes, and every nonempty
subset E C C of enabled processes there exists a process i € E and an the
updated state o' such that the tuple (o,C,E,i,0') satisfies the transition
relation 6.

A run (Cy, Ey,i9)(C1, E1,i1)(C2, Ea,i2). .. is produced by a scheduler S if there
erists an infinite sequence ogo103. .. € XY with og € Xy such that
(05, Cj, Ejrijy0j41) €6

holds for all j € N. A scheduler S is sound if every run that is produced by S is
fair. A scheduler S is universal if every fair run is produced by S. A scheduler S
is valid if it is both sound and universal.
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2.4 The scheduler Sgg

The explicit schedulers given in [10] use auxiliary integer-valued variables (so-
called scheduling variables), one for each process, to keep track of the relative
urgency of each process (relative to the other processes). Making it more urgent
is implemented by decrementing its scheduling value. Thus, scheduling values
can become negative. The crucial step is the non-deterministic update to a non-
negative integer each time after the process has been selected. Then, the process
is not necessarily less urgent than all other processes. However, it is definitely
less urgent than those that already have a negative scheduling value. This fact
is used to prove (by induction) the scheduling invariant: the scheduling value
will never decrease below —n, where n is the number of all processes [10]. This
again means that a process cannot become “arbitrarily urgent”; i.e., it has to be
selected after it has been made more urgent a finite (though unboundedly large)
number of times, which is exactly what fairness means.

In [10] a scheduler for fairness of programs with static control was proposed.
We extend it here to the case of infinitely many components and call it Sgg.
With each process i it associates a scheduling variable z[i] representing a priority
assigned to that process. A process i has a higher priority than a process j if
z[i] < z[j] holds.

Definition 2 ([10]). The scheduler Sgg = (X, Xy, d) is defined as follows:

— The states o € X are given by the values of an infinitary array z of type
N—Z, i.e., z[i] is a positive or negative integer for each i € N.

— The initial states in X are those where each scheduler variable z[i] has some
nonnegative integer value.

— The relation (o,C, E,i,0") €  holds for states o,0’ € X, a set C of created
processes, a set 2 C C' of enabled processes, and a process i € E if the value
of z[t] is minimal in o, i.e., if

holds in o, and o’ is obtained from o by executing the following statement:

UPDATE; = 2[i] = 7;
for all j € E\ {i} do z[j] :== z[j] — 1 od.

Note that the transition relation 4 is total as required by Definition 1. The
update of the scheduling variables guarantees that the priorities of all enabled
but not selected processes j are increased. The priority of the selected process i,
however, is reset arbitrarily. The idea is that by gradually increasing the priority
of enabled processes, their activation cannot be refused forever.

3 The scheduler Sgg and dynamic control

For static control the scheduler Sgg is valid, i.e., sound and universal as shown in
[10]. A closer examination of the proof shows that this result extends to bounded
control. However, for dynamic control this does not hold any more.
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Theorem 1. The scheduler Sgg is not valid for dynamic control.

Proof. We show that Sgg is not sound for programs with dynamic control. To
this end, we construct a run produced by Sgg in which process 0 is treated unfair,
i.e., it is infinitely often enabled but never selected. The idea is that in each step
a new process is created, which is enabled all the time. The process 0 is only
enabled in every second step. The scheduling variable of the other processes
will decrease more rapidly than the scheduling variable of process 0 and thus
will overtake it. The values of scheduling variables will force Sgg to activate the
newly created processes rather than process 0.

iHaolmlaz103104105106107108109[...
01[(0)] 0 |(-1)|-1[(-2)|-2|(-3)]-3 [(-4)|-4]. ..
1]0*| 0 [-1%] 0| -1|-2]-3¥|0]-1]-2]...
2110 [-1% 0 |-1|-2%|0|-1[-2]-3|-4]...
3
4
5

0]-1-2% 0 [-1]-2]-3[-4%|0]{...
0 [-1]-213* 0 |-1]-2/-3]...
0]-1(-2|-314* 0 |-1]...

Table 1. A run where process 0 is treated unfair

Table 1 shows an initial segment of this run in detail. In the column denoted
by i the process numbers are shown. The other columns show the values of the
scheduling variables z[i] in the scheduler states o¢,01,02,.... A star x after a
value indicates that in this state the process in the corresponding row is selected.
For example, in state o process 1 is selected. An entry in parenthesis indicates
that in this state the corresponding process is not enabled. This is the case
only for process 0. If process 0 is not enabled its scheduling variable z[0] is
not decremented in the next step. Empty boxes in the table indicate that in
this state the corresponding process is not yet created, otherwise the process is
created. Thus in state oy only the processes 0, 1, and 2 are created. Note that
in each step a newly created process appears in the successor state.

In general, in each state o9, process 0 is not enabled, its priority is —n, and
for each z € {—n,...,0} there are exactly two processes different from process 0
with priority z. In state each 02,41 process 0 is enabled, its priority is still —n,
there is one process with priority —n — 1, and for each z € {—n,...,0} there are
again exactly two processes different from process 0 with priority z: the process
scheduled in the previous step and the new process have priority 0 and the two
processes with priority z 4+ 1 in the previous step have now priority z. Then the
single process with priority —n — 1 is scheduled and we arrive at state o2,
where process 0 has priority —n — 1 and there are two processes different from
0 for each priority z € {—n — 1,...,0}. This concludes the proof. O
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It is interesting to notice the following.

Remark 1. The scheduler Sgg is universal for dynamic control.

The proof idea is that at each moment the value of the scheduling variable z[i]
of process i is set to the number of times process i is enabled before 7 is selected
or disappears or gets disabled forever. In this construction the variables z[i] have
at each moment nonnegative values. The selected process ¢ has the scheduling
value z[i] = 0. All other enabled processes j have scheduling values z[j] > 1.

An alternative scheduler for fairness was proposed in [3], Chapter 6. There
it is shown that this scheduler is, in our terminology, valid for static control.
However, by a variant of the counterexample in Table 1 it can be shown that
also this scheduler is unsound for dynamic control.

4 The scheduler S;¢

We obtain the scheduler Siy from Sgg by the applying the decrement of the
scheduling variable to all created processes j € C \ {i} and not only to the
enabled processes j € E'\ {i}.

Definition 3. The scheduler S1g results from Sgg by replacing UPDATE; with

S-UPDATE; = z[i] := 7;
for all j e C\ {i} do z[j] := z[j] — 1 od.

Theorem 2. The scheduler Sy is valid for dynamic control.

Proof. We show that Sqg is both sound and universal for dynamic control.

Soundness. Consider a run
(Co, Eo, o). - -(Cy, Ej, i5). .. (4)

of a program of the form (1) with dynamic control that is produced by S1¢ using
the sequence og 0 ...050;41 ... of scheduler states. We claim that (4) is fair.
Suppose the contrary holds. Then there exists some process i that is enabled

infinitely often, but from some moment on never selected. Formally, for some
Jo=>0

o0

(HJENZEEJ)/\(VJZJQZ#Z])
holds in (4). Then the variable z[i] of S19, which gets decremented whenever the
process i is not selected, becomes arbitrarily small. Thus we can choose jy large
enough so that z[i] < 0 holds in oj,. Consider the set

C’I‘iyj :{kEN ‘ kGCj/\Uj ):Z[kf] SZ[Z}}

of all created processes in C; whose priority is least that of the neglected pro-
cess i, formally, whose scheduling variable has at most the value of the scheduling
variable of ¢. Since we consider dynamic control, Cr; j, is finite in o,.



10 Jochen Hoenicke, Ernst-Riidiger Olderog, and Andreas Podelski

We show that for all j > jo:

Ori,j-&-l - OTZ‘,]‘ and Cri,j-i-l 7& O’I’i,j if i € Ej. (5)

Consider a process p that was not in Cr; ;. We show p ¢ Cr; j11 to prove
the inclusion. If p was scheduled in step j, then ;41 = z[i] < 0 < z[p], thus
p¢Crijp

If process p is newly created in step j we exploit two facts. (1) By the defini-
tion of S-UPDATE;, its scheduling variable z[p] is not decremented as long as p
is not created. (2) The process p has not been created before by the assumption
that a created process can disappear but not reappear, stated in Subsection 2.1.
By (1) and (2), z[p] has still its initial nonnegative value in state o;41, thus
oj+1 = 2pl 2 0. Sop & Cry jq.

If we take a process p different from the selected process then in the successor
state 041 the validity of the inequality z[p] < z[i] is preserved (both p and %
have their scheduling variable decremented by the definition of S-UPDATE;).

If process i is enabled in step j, the scheduler needs to select a process p
from Cr; ;. As seen before, the scheduled process is not in C'r; j41, thus Cr; ; #
C'r; j41. This proves property (5).

By assumption i is enabled infinitely often, so by (5) the set Cr; ; is strictly
decreasing infinitely often. This contradicts the fact that C'r; j, is finite.

Universality. Consider a fair run
(Co, Eo,i0)(C1, E1,i1)(C2, By, i2). . .. (6)

We show that (6) can be produced by Si¢ by constructing a sequence oy...0;. ..
of scheduler states satisfying (o;,C}, E;,i;,0,+1) € 0 for every j € N. The
construction proceeds by assigning appropriate values to the scheduling variables
z[i] of S19. For 7,57 € N we put

oi(zli])={keN|j<k<mijNiecCr}—|{keN|m;; <k<jnieCr},

where
(1) (j <mAip, =1)

m;; =ming meN \Y
(2) (Vn>m:i¢ E,)

Note that m; ; is the minimum of a non-empty subset of N because the run (6)
is fair. In case (1) of the definition of m; j, i.e., when 7 is eventually selected,
the value o;(2[t]) is nonnegative. However, in case (2) of the definition of m; j,
i.e., when i is not enabled any more, the value o;(z[i]) can denote arbitrarily
negative values.

This construction of values o;(z[i]) is possible with the assignments in Sy.
In the constructed run the selected process ¢ has the scheduling value z[i] = 0.
All other enabled processes j have scheduling values z[j] > 1. So ¢ is the unique
enabled process with the minimum of all scheduling values, which is 0. O
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5 The monitor Mgg

The scheduler Sgg does not decrease the scheduling variables of processes that are
not enabled. So these scheduling variables cannot become arbitrarily negative.
However, Sgg it not valid for dynamic control. The new scheduler Sy is valid for
dynamic control but the scheduling variables can become arbitrarly negative for
created processes that are from some moment on never enabled any more.

In this section we shall propose a variant of Sgg where the scheduling variables
are prevented from becoming negative. The price we pay for this property is that
this may lead to a blocking behaviour. Schedulers are required to be nonblocking,
i.e., they should have a totally defined transition relation. We now drop this
requirement and call the resulting device a monitor.

Definition 4. A monitor is a triple M = (X, Xy, d), where

— XY is a set of states with typical element o,
— Yo C X is the set of initial states, and
— ¢ is a transition relation of the form

6g2><2N><2N><N><E
(without totality requirement as for schedulers).

A run (Co, Fo,i0)(C1, E1,i1)(Ca, Ea,i2). .. is accepted by a monitor M if there
exists an infinite sequence cgo10o... € XY with oy € Xy such that

(05,Cj, Ej,ij,0541) €6

holds for all j € N. A monitor M is sound if every run that is accepted by M is
fair. A monitor M is universal if every fair run is accepted by M. A monitor Ml
is valid if it is both sound and universal.

Since the totality requirement is dropped for the transition relation §, the
monitor cannot be used to produce a fair run step-by-step because for a given
scheduler state o, a set C of created processes, and a set E of enabled processes
there may not be a process ¢ € E and an updated scheduler state o’ with
(0,C,E,i,0") € §. However, a monitor can be used as an acceptor of given runs.
Then the question of being able to stepwise produce the run is not relevant.

We modify the scheduler Sgg of Definition 2 to a monitor called Mgg.

Definition 5. The monitor Mgy is obtained from the scheduler Sgg by changing
the type of the infinitary array z of scheduling variables to N — N, i.e., for each
process i € N the scheduling variable z[i] can store only nonnegative integers.
As a consequence, inside the statement UPDATE; each decrement operation

zljl =2l -1

is defined only if z[j] > 0 holds. Otherwise the operation will cause a failure,
which blocks any further execution.
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As in the scheduler Sgg the process i with the minimal value of the scheduling
variables among the enabled processes is selected. However, in contrast to Sgg
and Spp the transition relation of the monitor Mgg is not totally defined any
more. Nevertheless, we have the following result.

Theorem 3. The monitor Mgg is valid for dynamic control.

Proof. We show that Mgg is both sound and universal for dynamic control.

Soundness. Consider a run
(CO7E0aiO)...(Cj,Ej,ij)... (7)

of a program of the form (1) with dynamic control that is accepted by Mgg, and
let 0g...0;5... be a sequence of states with (¢;,C;, Ej,4;,0541) € ¢ for every
j € N. We claim that (7) is fair.

Suppose the contrary holds. Then there exists some process ¢ which is in-
finitely often enabled, but from some moment on never selected. Note that
whenever process i is enabled but not selected, the monitor Mgg decrements
its scheduling variable z[i] provided z[i] > 0 holds. However, z[i] cannot be
decremented infinitely often without raising a failure, Contradiction.

Universality. Let the (7) be fair. Then we can proceed as in the proof outlined
for Remark 1 because according to that construction in each step of the run
exactly the selected process i has the scheduling value z[i] = 0. All other enabled
processes have scheduling values z[j] > 1. Thus the monitor Mgg can simulate
the scheduler Sgsg. O

The scheduling variables of the scheduler Sgg when applied to programs with
n processes (static control) can become arbitrarily positive but not arbitrarily
negative, i.e., they do not assume values below —n due to an execution invariant
of Sgs(see [10]). By contrast, the scheduling variables of S1g can become arbi-
trarily negative even when it is applied to programs with static comtrol only. By
definition, the scheduling variables of the monitor Mgg stay nonnegative. The
price for this is that the monitor can block the computation.

Other monitors

The monitor Mgg selects a process ¢ with the minimal value of the scheduling
variables among the enabled processes. We discuss two variants of this choice.
Let Migg* result from Mgg by selecting an enabled process ¢ with z[i] = 0, and
Mgg** result from Mgg by selecting an arbitrary enabled process.

Remark 2. The monitors Mgg® and Mgg™* are valid for dynamic control.

Proof. A closer inspection of the proof of Theorem 3 shows that the soundness
argument is independent of how an enabled process is selected. For the univer-
sality argument we notice that in the construction of the monitor state sequence
always an enabled process ¢ with z[i] = 0 is selected. O



Fairness for Dynamic Control 13

Surprisingly, an attempt to modify the scheduler Siy to a corresponding
monitor Ml fails because we can show that this monitor is not valid. Indeed,
let us define the monitor Mjy analogously to Definition 5 by changing in the
scheduler S1( the type of the infinitary array z of scheduling variables to N — N,
i.e., for each process i € N the scheduling variable z[i] can store only nonnegative
integers. Again, the transition relation of the monitor My is not totally defined
because the decrement operations z[j] := z[j] — 1 can fail.

In contrast to the monitor Mgg, we have the following negative result.

Remark 3. The monitor Mg is not valid for dynamic control, not even for static
control.

Proof. We show that My is not universal for programs with static control.
Consider a fair run of a program where from some moment on a created process
Jj is not enabled any more. Then the corresponding variable z[j] gets decremented
whenever another process i is selected. So z[j] = 0 will eventually hold and thus
the run cannot be accepted by Mg without blocking. O

6 Infinitary fairness

In this section we investigate which of our previous results actually relies on the
restriction to dynamic control. We shall see that some hold even in the setting
of infinitary control and others do not.

Since the scheduler Sgg is not valid for dynamic control, it is not valid for
infinitary control either. More precisely, Sgg is not sound for infinitary control.
This follows trivially from the corresponding argument in the proof of Theorem 1
for dynamic control. On the other hand, Sgg is universal for infinitary control.
Indeed, the proof idea presented for Remark 1 does not rely on the restriction
to dynamic control.

For the scheduler S;g we have analogous results for infinitary control.

Theorem 4. The scheduler S1g is not valid for infinitary control.

Proof. The soundness argument in the proof of ’

Theorem 2 exploits the assumption of dynamic L [oo[o1][o2]0s]0u].. |
control. We show now that Si¢ is not sound for 0 0% 0 |-1]-2]-3|..
programs with infinitary control. To this end, we | 1 || 0 |-1*| 0 [-1[-2...
construct a run produced by S;o where every pro- sTol1l=2% 0 -1 .
cess is treated unfair. More precisely, every process =

is always enabled but selected only once, in the ith 3012370
selection of the run: (N,N,0)(N,N,1)(N,N,2)... [4] 0 [-1]-2]-3-4%...

This is possible by choosing the corresponding se-
quence ogo103 ... of scheduler states as follows:

0;(z[i]) =

i+1—jif i<j
—j if >
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The table on the previous page shows an initial segment of this sequence in
detail. As in Table 1, in the column denoted by ¢ the process numbers are shown.
The other columuns in the table show the values of the scheduling variables z[i]

in the scheduler states o, 01,02, .... A star * after a value indicates that in this
state the process in the corresponding row is selected. For example, in state o
process 0 is selected. O

On the other hand, the universality of Sig still holds for infinitary control.
Indeed, the universality argument in the proof of Theorem 2 does not use the
assumption of dynamic control. What about the monitor Mgg? Interestingly, it
can also be used for infinitary control.

Remark 4. The monitor Mgg is valid for infinitary control.

This result follows from a closer examination of the proof of Theorem 3 which
does not use the assumption of dynamic control.

7 Conclusion

The results presented in this paper provide a new understanding of fairness
in the context of dynamic control. Fairness means the non-starvation of each
single process. L.e, it must not happen that a process, say i, is enabled infinitely
often but not taken. Thus, at each state o of an execution, there is only a finite
number of positions where process i is enabled before it is taken. The difficulty
of scheduling a dynamically growing number of processes stems from the need
to prioritize “fairly” among the processes.

Our first result says that correlating the priority to the number of times that
a process was enabled but not taken does not guarantee fairness. Since more and
more newly created processes can increase their priority, it is possible that one
of them overtakes process i in its priority.

Our second result says that correlating the priority to the number of times
that a process was not taken (regardless of whether it was enabled or not)
prevents this kind of overtaking and succeeds in guaranteeing fairness. As a con-
sequence, the priority of a process that is never enabled again can get arbitrarily
high, and in particular higher than the priority of every enabled process. This
fact, although it contradicts the original intuition about explicit scheduling, does
not impede the functioning of the scheduler.

The third result says that correlating the priority to the number of times that
a process was enabled but not taken does guarantee fairness if this can happen
only a finite number of times. Which itself is enforced by a bound on its priority;
i.e., the priority cannot increase indefinitely. As a result, one obtains blocked
executions (the execution gets blocked if the bound is reached). Although one
needs to overcome a conceptual barrier (since blocking contradicts the philosophy
that underlies the very concept of scheduling), one arrives at the concept of a
monitor which fullfills the purpose of a scheduler in the context of verification.
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This leads to a new line of future research: explore the potential of the mon-
itor for automated verification methods for termination and liveness properties.
Tools for programs that have terminating, though unboundedly long executions,
in general use integer arithmetic to deal with ranking functions. The concept
of the integer variable that measures the priority of a process is related to the
concept of a rank and requires the same kind of reasoning; i.e., adding an integer-
based monitor to deal with fairness does not add a foreign element as far as the
reasoning method is concerned. For this reason, the potential of the monitor for
automated verification methods seems promising.

We have left open the following question. Does there exists an explicit sched-
uler for infinitary control?
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