
c© ACM 2010. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for re-
distribution. The definitive version was published in Principles of Programming Languages (POPL ’10), pages 471-482. ACM, 2010.
http://doi.acm.org/10.1145/1706299.1706353

Nested Interpolants

Matthias Heizmann Jochen Hoenicke Andreas Podelski
University of Freiburg, Germany

Abstract
In this paper, we explore the potential of the theory of nested
words for partial correctness proofs of recursive programs. Our
conceptual contribution is a simple framework that allows us to
shine a new light on classical concepts such as Floyd/Hoare proofs
and predicate abstraction in the context of recursive programs.
Our technical contribution is an interpolant-based software model
checking method for recursive programs. The method avoids the
costly construction of the abstract transformer by constructing a
nested word automaton from an inductive sequence of ‘nested
interpolants’ (i.e., interpolants for a nested word which represents
an infeasible error trace).

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory, Verification.

Keywords Nested words, interpolants, recursion, static analysis,
abstract interpretation, software model checking, abstraction re-
finement, Floyd-Hoare logic.

1. Introduction
A recent trend in software verification tools in the line of [5, 8,
9, 12, 14, 15, 16, 19, 20] is to use interpolants in order to avoid
the construction of the abstract transformer for the underlying pro-
gram analysis. The idea is to generate an inductive sequence of
interpolants from a false positive (a ‘spurious error trace’) returned
by the program analysis. Roughly, the inductiveness expresses that
the interpolants can be used to form a sequence of Hoare triples
which proves the infeasibility of the spurious error trace. The in-
ductiveness thus entails the elimination of the false positive. While
the approach is incarnated with great success in the ‘lazy abstrac-
tion with interpolants’ scheme for non-procedural programs [19],
it is not clear how one can extend it to a principled method for the
general class of programs with procedures, possibly recursive ones.
What we are interested in here is a general foundation that allows us
to systematically reason about interpolant-based correctness proofs
for recursive programs. In this paper, we propose to base such a
foundation on the theory of nested words [2, 3].

The motivation to use nested words stems directly from the
observation that the stack-based semantics of recursive programs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

is not appropriate for our purpose. If we model a state as a stack
of valuations of program variables and generate interpolants from a
trace modeled as a sequence of states, then the interpolants cannot
be restricted to contain variables of the local calling context. This
defeats the very purpose of interpolants (to carry a minimal amount
of information needed locally at a given position in the trace).

The theory of nested words (and nested word automata) offers
an interesting potential as an alternative to the low-level view of
a recursive program as a stack-based device that defines a set of
traces. A nested word expresses not only the linear order of a trace
but also the nesting of calls and returns. A nested word automaton
does not need a stack. If we model the execution of a recursive
program as a nested word, we can reason directly on the nesting,
instead of having to recover the nesting with the help of a stack.
We thus trade an operationally complex device defining a set of
simple objects (traces) for an operationally simple device defining
a set of rich objects (nested traces). The insight put forward in this
work is that the increase of the object complexity is irrelevant since
we reduce the reasoning of program correctness to the emptiness
of the defined set of objects (the objects are existentially quantified
and thus ‘projected out’).

In this paper, we explore the potential of the theory of nested
words as a foundation for correctness proofs for the general class
of recursive procedures. Our conceptual contribution is a simple
framework that allows us to shine a new light on classical concepts
such as Floyd/Hoare proofs and predicate abstraction for recur-
sive programs. Our technical contribution is to give, to our knowl-
edge for the first time, a principled method that constructs an ab-
stract proof for recursive programs from interpolants (avoiding the
construction of the abstract transformer). The method constructs a
nested word automaton from an inductive sequence of ‘nested in-
terpolants’ (i.e., interpolants for the ‘nested trace’ of the recursive
program).

Related Work. Given the huge body of work on the treatment of
recursion and the use of interpolants in software verification, we
will discuss only the most related work.

We pick up the line of work on using nested words to provide a
basis for software verification [2, 3]. A basic observation in [2, 3]
is that the set of nested words generated by an abstract recursive
program is definable by a finite nested word automaton. This ob-
servation refers to the setting where one has already constructed
an abstract recursive program (from the program to be verified).
This construction amounts to the construction of the abstract trans-
former, a costly step that current research tries to optimize, or to
avoid altogether [5, 7, 8, 9, 12, 14, 15, 16, 19, 20] . Our work refers
to the general setting of software model checking, where this step
is not or not yet performed. I.e., we investigate different ways to
construct a finite nested word automaton directly from the program
to be verified. This allows us to give a foundation for interpolant-
based proofs for recursive programs.

We distinguish two methods to use interpolants for software
verification. The first method, as used, e.g., in [13, 19], generates an

http://doi.acm.org/10.1145/1706299.1706353
http://dx.doi.org/10.1145/1706299.1706353

procedure m(x) returns (res)
{>}

`0: if x>100
{x ≥ 101}

`1: res:=x-10
else
{x ≤ 100}

`2: xm := x+11
{xm ≤ 111}

`3: call m
{resm ≤ 101}

`4: xm := resm
{xm ≤ 101}

`5: call m
{resm = 91}

`6: res := resm
{res = 91 ∨ (x ≥ 101 ∧ res = x− 10)}

`7: assert (x<=101 -> res=91)
return m

Figure 1. McCarthy’s 91 function together with a Floyd-Hoare
style annotation with invariant assertions. The program is correct
if the assert statement never fails.

inductive sequence of interpolants from the spurious error trace of a
non-recursive (non-procedural) program. The interpolants form the
labels in the abstract reachability tree (in conjunctions in [19], and
in tuples in [13]). The method thus constructs an interpolant-based
proof and avoids the construction of an abstract transformer.

The second method, as used, e.g., in [11, 14, 17], generates a
not necessarily inductive sequence of interpolants from the spuri-
ous error trace of a recursive program. The interpolants are used
solely for defining new predicates (by subformulas). The method
does construct an abstract transformer. The proof is constructed by
fixpoint iteration. The iterates (i.e., not the interpolants) form a se-
quence of Hoare triples which proves the infeasibility of the spuri-
ous error trace. I.e., the inductiveness of sequences of interpolants
is irrelevant in [11, 14].

To summarize, the first method does not account for recursion,
and the second one does not consider inductive sequences of in-
terpolants (or other ways to avoid the construction of the abstract
transformer). In contrast, we use nested words to formalize in-
ductive sequences of interpolants for traces of recursive programs
(and nested word automata to avoid the construction of the abstract
transformer).

2. Preliminaries
In this section, we fix the notation for recursive programs (follow-
ing [21]) and for nested words (following [2, 3]).

2.1 Recursive Programs
Informal Presentation. We consider a simple procedural pro-
gramming language in a BoogiePL-like syntax [6]. As usual, we
impose a number of restrictions and conventions in order to sim-
plify the formal exposition. The language has no pointers, no global
variables and only call-by-value procedure calls. It is forbidden to
write to the input variables of a procedure. A procedure p has one
input parameter x and one output parameter res. Procedure calls
appear in the following form.

resp := call p(xp)

`0

`1

`2

`3

`4

`5

`6

`7

`err

x>100

res:=x-10

x<=100

xm:=x+11 call m

xm:=resm

call m

res:=resm

return m ↑`3

return m ↑`5
x≤101∧res6=91

Figure 2. Recursive control flow graph for the recursive program
P91 implementing McCarthy’s 91 function. The initial location
is `0. The error location `err is used to encode the correctness of
the program. In Section 3 we will introduce a different reading of
the graph, namely as a particular nested word automaton (over the
alphabet of statements st), the control automaton AP91 .

If procedure p with formal parameter x is called, the argument
(actual parameter) is a special variable xp. On return, the value of
the procedure’s output variable res is stored into the special variable
resp of the caller. Before calling procedure p, the caller writes the
input value to the variable xp. The callee accesses the value through
the variable x. The callee stores the result value into the variable res.
The result value is returned to the caller through the variable resp.
Procedures with arbitrarily many input and output parameters can
be treated in an analogous way. A global variable can be modeled
by adding an input and an output variable to each procedure that
directly or indirectly (via a recursive function call) accesses the
global variable.

Figure 1 shows an implementation of McCarthy’s 91 function
(if the argument x is not greater than 101, the function returns 91)
in a code fragment that meets our restrictions and conventions.

Formal Presentation: Recursive Control Flow Graph. Follow-
ing [21], we present a recursive program formally as a recursive
control flow graph; see Figure 2 for an example. Each node is a
program location `. Each edge is labeled with a statement st, which
is either an assignment y:=t , an assume φ , a call call p , or a
return return p .

For each procedure p, the recursive control flow graph contains
p’s control flow graph. The edges between internal nodes are la-
beled with assignment or assume statements. The nodes of p’s con-
trol flow graph are the program locations of p, say `p0, . . . , `

p
n where

the node `p0 is the entry location of p and `pn its exit location. To
model that procedure p is called from procedure q at program loca-
tion `qj (in q’s control flow graph),

• an edge labeled call p goes from `qj to `p0 , the entry location
of p,

state label of edge (`, `′) successor state side condition

assignment S.(`, ν) y:=t S.(`′, ν′) ν′ = ν ⊕ {y 7→ ν(t)}
assume S.(`, ν) φ S.(`′, ν) ν |= φ

call S.(`, ν) call p S.(`, ν).(`′, ν′) ν′(x) = ν(xp)

return S.(<̀ , ν<).(`, ν) return p ↑ <̀ S.(`′, ν′) ν′ = ν< ⊕ {resp 7→ ν(res)}

Figure 3. Semantics of statements in the context of a recursive control flow graph (where a statement is used to label an edge between two
nodes ` and `′). A state is a stack of local states/location-valuation pairs; the current local state is the topmost/rightmost one.

• an edge labeled return p ↑ `qj goes from `pn, the exit location
of p, to the location `qj+1 in q’s control flow graph, where
`qj+1 is the successor location of `qj with respect to the call of
procedure p.

In Figure 2, we use a thick gray edge in order to depict the successor
location of a call location, with respect to the procedure calls
initiated by call m . The thick gray edges are not edges of the
recursive control flow graph. The assert statement from Figure 1
is translated to an edge which is labeled with an assume statement
and leads to a special error location.

Semantics. A valuation ν is a function that maps program vari-
ables to values. A (local) state of a procedure is a pair (`, ν), con-
sisting of a program location and a valuation. A state S of the
(whole) program is a stack of local states, i.e., location-valuation
pairs, which we write as a sequence

S = (`0, ν0).(`1, ν1) . . . (`n, νn).

Each element corresponds to a called (and not yet returned) proce-
dure. The topmost/rightmost element represents the actual calling
context.

Each statement st induces a transition relation between states;
see Figure 3. We use the usual notation for a transition from a state
S to a successor state S′.

S
st−→ S′

Traces π. A trace π is a sequence of statements, π = st0 . . . stn−1.
We extend the transition relation from single statements to traces
in the usual way and use the same notation also for traces.

S
π−→ S′

A trace π is a feasible error trace of the program P if there
exists an initial valuation ν0, a stack of local states S and a final
valuation νn such that the triple

(`0, ν0)
π−→ S.(`err, νn)

is a transition of the program (where `0 is the initial location of the
main procedure of P and `err is an error location of P).

Program Correctness = No Feasible Error Traces. The recursive
control flow graph encodes program correctness through special
nodes corresponding to error locations. We define the correctness
of the program through the non-reachability of an error location `err

by a program execution. Formally, a program P is correct if it has
no feasible error trace.

The classical notion of partial correctness can be accommodated
by representing precondition and postcondition by assume state-
ments and assert statements (the latter is translated to an edge that
leads to the error location).

2.2 Nested Words
Following [2, 3], a nested word over an alphabet Σ is a pair (w,)
consisting of a word w = a0 . . . an−1 over the alphabet Σ and

the nesting relation . The fact that is a nesting relation for
w means that we have a relation between the n positions of w,
formally

 ⊆ {0, . . . , n− 1} × {0, . . . , n− 1,∞}
which is left-unique, right-unique, and properly nested, formally:

i1 j, i2 j, j 6=∞ implies i1 = i2

i j1, i j2 implies j1 = j2

i1 j1, i2 j2, i1 ≤ i2 implies

 i1 < j1 < i2 < j2
or

i1 ≤ i2 < j2 ≤ j1.

The idea is that the relation between the position i of a call and
the position j of a matching return is expressed by i j. Positions
appearing on the left (resp. right) in pairs in are called call (resp.
return positions). All other positions are internal positions. The
index ∞ is used as return position for all unfinished calls. For a
return position j 6= ∞, the corresponding call position (i.e., the
unique position i such that i j) is the call predecessor of j. In
contrast with [3], we do not allow −∞ as a call predecessor. In
contrast with [2], we do allow∞ as a return position.

Possibly Infinite Nested Word Automata (NWA). A nested word
automaton over an alphabet Σ is a tuple

A = (Q, 〈δin, δca, δre〉, Qinit, Qfin)

consisting of

• a (not necessarily finite) set of states Q,
• a triple 〈δin, δca, δre〉 of transition relations for, respectively,

internal, call, and return positions,

δin ⊆ Q× Σ×Q
δca ⊆ Q× Σ×Q
δre ⊆ Q×Q× Σ×Q

• a set of initial states Qinit ⊆ Q,
• a set of final state Qfin ⊆ Q.

A run of a nested word automaton A over the nested word
(a0 . . . an−1,) is a sequence q0, . . . , qn of states that starts in
an initial state, i.e., q0 ∈ Qinit, and that is consecutive, i.e., for each
i = 0, . . . , n− 1,

(qi, ai, qi+1) ∈ δin if i is an internal position,
(qi, ai, qi+1) ∈ δca if i is a call position,

(qi, qk, ai, qi+1) ∈ δre if i is a return position and k i.

The run is accepting if it ends in a final state, i.e., qn ∈ Qfin.
The nested word automaton A accepts the nested word (w,)

if it has an accepting run over (w,). The language of nested
words recognized by A is the set L(A) consisting of the nested
words accepted by A.

0 x<=100

1 xm:=x+11

2 call m

3 x>100

4 res:=x-10

5 return m

6 xm:=resm

0 x<=100

1 xm:=x+11

2 call m

3 x>100

4 res:=x-10

5 return m

6 res:=resm

7 x≤101∧res6=91)

x xm resm res

ν0 97 ∗ ∗ ∗

ν1 97 ∗ ∗ ∗

ν2 97 108 ∗ ∗

ν3 108 ∗ ∗ ∗

ν4 108 ∗ ∗ ∗

ν5 108 ∗ ∗ 98

ν6 97 108 98 ∗

ν7 97 108 98 98

ν8 97 108 98 98

0 x<=100

1 xm:=x+11

2 call m

3 x>100

4 res:=x-10

5 x≤101∧res6=91)

nested trace π1 nested trace π2 nested trace π3

1 1 4 2 2 5 2 3∞

Figure 4. Examples of nested traces (over the alphabet of statements used in the recursive program P91 implementing McCarthy’s 91
function). The indentation of the statements indicates the nesting relation. The nested trace π3 is accepted by the control automaton AP91 ;
the two others are not. The nested trace π2 is accepted by the data automaton AΣ (the sequence ν0, . . . , ν8 is an accepting run); the two
others are not.

Deviating from [2, 3], we do not require that the set of states of a
nested word automaton is finite. In the next section, we will define
the data automaton as a possibly infinite nested word automaton.
All other automata considered in this presentation are finite.

The notion of regularity does not deviate from [2, 3]. A language
of nested words is regular if it is recognized by a finite nested word
automaton. Regular languages of nested words enjoy the standard
properties of regular language theory, of which we will use the
closure under intersection and complement, and the decidability of
emptiness [2, 3].

3. An NWA View of Program Correctness
The first step to formulate a view of program correctness in terms of
nested words is to fix the alphabet, namely as the set of statements.
Once we have done that it is very natural to give a view of Pro-
gram correctness, to define a new proof rule based on nested word
automaton, and to give a new formulation of predicate abstraction
based on nested word automata.

3.1 An NWA characterization of Program Correctness
We assume a fixed set of statements which we note Σ. We will view
Σ as an alphabet, statements st as letters and traces st0 . . . stn−1 as
words; i.e., st0 . . . stn−1 ∈ Σ∗.

We define a nested trace to be a nested word

π = (st0 . . . stn−1,)

over the alphabet Σ of statements.
Given a nested trace over the alphabet Σ whose letters include

call and return statements, it makes sense to refine the notion of
nesting. We say that π = (st0 . . . stn−1,) is well-nested if the
nesting relation between its positions is consistent with the letters
at the respective positions; i.e., we have

• the letter sti is a call statement if and only if i is a call position,
and
• the letter sti is a return statement if and only if i is a return

position.

Example 1. Figure 4 depicts three examples of nested traces (over
the alphabet of statements used in the McCarthy example). The
three corresponding nesting relations are given below.

1 1 4

2 2 5

2 3 ∞
In the figure we use indentation to indicate the nesting relation.

Nested Traces and Possible Program Executions. The notion of
a nested trace does not refer to a specific program (in fact, it may
not correspond to a path in the given program’s recursive control
flow graph), and it does not take into account the semantics of
statements (it may not correspond to a possible execution of any
program).

We will next introduce two properties of a nested trace which
together imply the fact that it corresponds to a possible execution of
the given program. The two properties characterize two orthogonal
aspects (“control” vs. “data”) of this fact. Each of the two properties
will be presented as a nested word automaton, AP resp. AΣ.

The first property characterizes the fact that the nested trace
complies with the control flow prescribed by the recursive program
graph (and that it is well-nested). This property is a regular lan-
guage of nested words; we will use the control automaton AP , a
finite nested word automaton, to present it.

The second property characterizes that the nested trace complies
with the semantics of statements as manipulators of data (and that
it is well-nested). This property is in general not a regular language
of nested words; we will use the data automatonAΣ, an in general
infinite nested word automaton, to present it.

Control. From now on, we assume a fixed program P given
formally as a recursive control flow graph. The set of nested traces
that comply with the control expressed by P (ignoring the data)
can be formally defined by the recursive program graph viewed as
a nested word automaton. I.e., the edges of the recursive program
graph defines the three kinds of transition relations; the initial
location defines the set of initial states; the error location defines
the set of final states.

Definition 1 (Control AutomatonAP , Nested Error Trace). Given
the program P , the control automaton AP is the nested word
automaton

AP = (Q, 〈δin, δca, δre〉, Qinit, Qfin)

where

• the set of states Q is the set of nodes (i.e., program locations),
• the three transition relations δin, δca, δre are the edge relations;

i.e., if the edge (`, `′) is labeled with:
the assignment or assume statement st, then

(`, st, `′) ∈ δin

the call statement call p , then

(`, call p , `′) ∈ δca

the return statement (with call location <̀) return p ↑ <̀ ,
then

(`, <̀ , return p , `′) ∈ δre

• the set of initial states Qinit consists of the initial location of the
main procedure,

Qinit = {`main
0 }

• the set of final states Qfin consists of the error location,

Qfin = {`err}.
A nested error trace is a nested word accepted by the control
automaton AP .

An alternative, richer way to define the regular language of
nested error traces uses the automata-theoretic product of two
nested word automata. The first one is the recursive program graph
(without error locations) viewed as a nested word automaton (just
as we did for AP) where every program location is a final state;
i.e., Qfin = Q. The second one is the nested word automata that
corresponds to the negation of the CaRet property that defines the
program correctness [1].

Example 2. The control automaton AP91 of the program P91 is
given in Figure 2. In the figure, a return edge labeled by a return
statement together with the call location represents a transition
in δre. For example, the edge labeled (`7, return m ↑ `5, `6)
represents the transition (`7, `5, return m , `6) in δre. We next take
the three nested traces from Example 1 (given in Figure 4) and
investigate whether they are accepted by AP91 .

The nested trace π1 is not accepted because position 1 is a call
position according to the nesting relation (and hence the successor
state should be given by the transition relation δca), but the letter at
position 1 is not a call statement (and hence there is no successor
state according to the transition relation δca).

The nested trace π2 is not accepted. The run

r = `0, `2, `3, `0, `1, `7, `6, `7, `err

is possible according to the graph structure ofAP91 . However, Po-
sition 5 of π2 is a return position, and position 2 its call predeces-
sor. Only if (`7, `3, return m , `6) was a transition in δre (corre-
sponding to a return edge of AP91), r would be a valid run.

This (the fact that the nested trace π2 is not accepted) illustrates
that the control automaton enforces the call/return discipline; i.e.,
return statements leading to `6 can only return from procedures
called from location `5.

The nested trace π3 is accepted by AP91 . This illustrates the
fact that the control automaton accepts traces with unmatched call
statements. The example also illustrates that the existence of a

nested error trace (i.e., the non-emptiness of the control automaton
AP) does not yet imply a violation of the correctness specification
(“control is not enough; we also need data”).

Data. We next define the data automaton AΣ. This (in general
infinite) nested word automaton recognizes an (in general non-
regular) set of nested traces. This set contains the well-nested traces
that are possible according to the semantics of statements (whose
execution manipulates data). We call these traces feasible nested
traces.

This is the only point in the presentation where we define an
infinite nested word automaton. In fact, from now on we will
construct finite nested word automata that approximate the infinite
data automaton AΣ (i.e., recognize a superset).

Definition 2 (Data AutomatonAΣ, Feasible Nested Trace). Given
the set of statements Σ, the data automaton

AΣ = (Q, 〈δin, δca, δre〉, Qinit, Qfin)

is the (in general infinite) nested word automaton where

• the set of states Q is the (in general infinite) set of valuations ν,
• the three transition relations δin, δca, δre are the transition rela-

tions induced by the statements in Σ; i.e., if the statement is:
the assignment statement y:=t , then

(ν, y:=t , ν ⊕ {y 7→ ν(t)}) ∈ δin

the assume statement φ , then

(ν, φ , ν) ∈ δin if ν |= φ

the call statement call p , then

(ν, call p , ν′) ∈ δca if ν′(x) = ν(xp)

the return statement return p , then

(ν, ν<, return p , ν< ⊕ {resp 7→ ν(res)}) ∈ δre .

• every state is an initial state (i.e. Qinit = Q),
• every state is a final state (i.e. Qfin = Q).

A feasible nested trace is a nested word is accepted by the data
automaton.

Example 3. We take the three nested traces from Example 1 (given
in Figure 4) and investigate whether they are accepted by AΣ. The
nested trace π1 is not accepted; the same explanation as with AP
applies. In fact, both a control automaton and a data automaton
accept only well-nested traces.

The nested trace π2 is accepted (i.e., it is a feasible nested
trace). The sequence ν0, . . . , ν8 is an accepting run.

The nested trace π3 is not accepted because there is no valua-
tion/state ν with a run that reads the three letters: the assume state-
ment x>100 , the assignment res:=x-10 and the assume state-
ment x≤101∧res6=91) .

Theorem 1 (Characterizing Program Correctness by NWA’s). The
program P is correct if and only if the intersection between the
control automaton and the data automaton is empty, formally

L(AP) ∩ L(AΣ) = ∅.

Proof. Using the three notions of: feasible error trace (defined in
Section 2.1), nested error trace (i.e., accepted byAP), and feasible
nested trace (i.e., accepted byAΣ), we can rephrase the theorem as
follows. A trace st0 . . . stn−1 is a feasible error trace of P if and
only if there exists a nesting relation such that the nested trace
(st0 . . . stn−1,) is at the same time a nested error trace and a
feasible nested trace.

We show a more general statement by induction on the length
n of the trace. For every nesting relation such that ⊆
{0, . . . , n − 1} × {0, . . . , n − 1,∞}, every sequence of loca-
tions `0, . . . , `n and every sequence of valuations ν0, . . . , νn the
following two statements are equivalent.

• The sequence of locations `0, . . . , `n is a run of AP for
(st0 . . . stn−1,) and the sequence of valuations ν0, . . . , νn
is a run of AΣ for (st0 . . . stn−1,).
• The nested trace (st0 . . . stn−1,) is well-nested and there is a

sequence of stacks

(`0, ν0)
st0−→ S1.(`1, ν1)

st1−→ · · ·
stn−1−→ Sn.(`n, νn)

according to the transition relation of P . In that case Si =
(`k0 , νk0) . . . (`km , νkm) such that the nesting relation contains
k0 k′0, . . . , km k′m and k0 < · · · < km < i ≤ k′m ≤
· · · ≤ k′0 holds.

3.2 Proof Rule Based on Finite NWA
The following proof rule for the correctness of recursive programs
uses a finite nested word automaton A as a proof argument: if A
recognizes a superset of the set of feasible nested traces and it
does not intersect with the control automaton, then the program
is correct.

L(A) ⊇ L(AΣ), L(A) ∩ L(AP) = ∅ =⇒ P is correct (1)

The proof rule is interesting by the theory of regular languages of
nested words; once we have constructed a finite nested word au-
tomaton A that approximates the data automaton, the emptiness
of its intersection with the control automaton can be tested effec-
tively [2, 3].

The soundness of the proof rule (1) follows from the only-if di-
rection of Theorem 1. The question is: if the program P is correct,
is there always a proof argument in the form of a finite nested word
automaton A? Perhaps surprisingly, the answer is yes: the proof
rule is complete. Completeness notoriously holds (if it holds) by a
disappointingly trivial line of reasoning with no indication on how
to find the proof argument. For the proof rule (1), it is sufficient to
take the complement of AP as a candidate for A. Clearly its inter-
section with AP is empty. Since AP does not accept any feasible
nested trace (otherwise P would not be correct), or: it recognizes
a subset of infeasible nested traces, its complement recognizes a
superset of feasible traces. We summarize our discussion by the
following statement.

Theorem 2 (Soundness and Completeness of Proof Rule (1)). The
program P is correct if and only if there exists a finite nested word
automatonA that recognizes a superset of the set of feasible nested
traces (i.e., L(A) ⊇ L(AΣ)) and that does not intersect with the
control automaton (i.e., L(A) ∩ L(AP) = ∅).

In the remainder of this presentation, we will investigate sys-
tematic ways to construct candidate proof arguments for a finite
nested word automaton A.

3.3 Predicate Abstraction
In this section, we automate the proof rule given in the previous
section by giving a predicate abstraction-based proof method for
the correctness of a recursive program. The proof method uses
predicate abstraction to construct a finite nested word automaton
APred which recognizes a superset of the set of feasible nested
traces. The proof succeeds if the intersection of APred with the
control automaton AP is empty.

Intuitively, the proof method constructsAPred by abstracting the
data automaton AΣ. The abstraction consists essentially of trans-
forming the triple of transition relations between concrete valu-

ations (the states of AΣ) into a triple of transition relations be-
tween abstract valuations. Abstract valuations are defined in terms
of predicates; we will formally introduce abstract valuations as
bitvectors.

Predicates. In our context, a predicate is a set of valuations. Such
a set may be defined by an assertion, e.g., x ≥ 101.

Bitvectors. Given a finite set of predicates, say

Pred = {p1, . . . , pm}
we call an m-tuple bbb ∈ {0, 1}m a bitvector. Assuming a fixed
order on the predicates, a bitvector bbb = 〈b1, . . . , bm〉 has a meaning
defined by

[[〈b1, . . . , bm〉]] = {ν | ∀j ∈ {1, . . . ,m}. ν ∈ pj ⇔ bj = 1}.

Nested Post Operators 〈postin, postca, postre〉. The triple of
nested post operators 〈postin, postca, postre〉 defined in Figure 5
are in direct connection with the triple of transition relations
〈δin, δca, δre〉 of the data automaton AΣ. Namely, for a set V of
valuations, we have:

postin(V, st) = {ν′ | ∃ ν ∈ V : (ν, st, ν′) ∈ δin}
postca(V, st) = {ν′ | ∃ ν ∈ V : (ν, st, ν′) ∈ δca}

postre(V,V<, st) = {ν′ | ∃ ν ∈ V ∃ ν< ∈ V< :

ν(x) = ν<(xp),

(ν, ν<, st, ν
′) ∈ δre}

Abstract Nested Post Operators 〈post#in , post
#
ca, post

#
re 〉. The

translation of the triple 〈postin, postca, postre〉 of nested post oper-
ators into the triple 〈post#in , post

#
ca, post

#
re 〉 of abstract nested post

operators (over bitvectors) is as one expects; see Figure 5.

Definition 3 (Predicate Automaton APred). Given the set of predi-
cates Pred, the predicate automaton

APred = (Q, 〈δin, δca, δre〉, Qinit, Qfin)

is the finite nested word automaton where

• the set of states Q consists of all bitvectors,
• every state is initial, i.e., Qinit = Q,
• every state is final, i.e., Qfin = Q,
• the triple of transition relations 〈δin, δca, δre〉 corresponds to

the triple 〈post#in , post
#
ca, post

#
re 〉 of abstract nested post op-

erators; i.e.,
if st is an assignment or assume statement, then

(bbb, st, bbb′) ∈ δin if bbb′ ∈ post#in (bbb, st),

if st is a call statement, then

(bbb, st, bbb′) ∈ δca if bbb′ ∈ post#ca(bbb, st),

if st is a return statement, then

(bbb, bbb<, st, bbb
′) ∈ δre if bbb′ ∈ post#re (bbb, bbb<, st).

Theorem 3. The predicate automatonAPred recognizes a superset
of the set of feasible nested traces, i.e., L(APred) ⊇ L(AΣ).

Proof. An accepting run ν0, . . . , νn of the data automaton AΣ on
a nested trace π gives rise to an accepting run bbb0, . . . , bbbn of the
predicate automaton APred on π where the i-th bitvector contains
the i-th valuation, formally νi ∈ [[bbbi]] for i = 0, . . . , n.

postin(V, y:=t) = {ν ⊕ {y 7→ ν(t)} | ν ∈ V}
postin(V, φ) = {ν | ν ∈ V, ν |= φ}

postca(V, call p) = {ν′ | {x 7→ ν(xp)} ∈ ν′, ν ∈ V}
postre(V,V<, return p) = {ν< ⊕ {resp 7→ ν(res)} | ν(x) = ν<(xf), ν< ∈ V<, ν ∈ V}

post#in (bbb, y:=t) = {bbb′ | postin([[bbb]], y:=t) ∩ [[bbb′]] 6= ∅}
post#in (bbb, φ) = {bbb′ | postin([[bbb]], φ) ∩ [[bbb′]] 6= ∅}

post#ca(bbb, call p) = {bbb′ | postca([[bbb]], call p) ∩ [[bbb′]] 6= ∅}
post#re (bbb, bbb<, return p) = {bbb′ | postre([[bbb]], [[bbb<]], return p) ∩ [[bbb′]] 6= ∅}

Figure 5. The triple 〈postin, postca, postre〉 of nested post operators (over sets of valuations V) is in correspondence with the triple of
transition relations of the data automaton AΣ. The triple 〈post#in , post

#
ca, post

#
re 〉 of abstract nested post operators (over bitvectors) is in

correspondence with the triple of transition relations of the predicate automaton APred.

4. Nested Interpolant Automata
We now define a class of finite nested word automata which recog-
nize subsets of the set of infeasible traces. That is, we will use their
complement for the nested word automaton A that serves as proof
argument in the proof rule (1) of the previous section.

In many of the settings that we consider, we have a sequence of
predicates I0, I1, . . . , In (we refer to the predicates as interpolants
for reasons that will become apparent later); this sequence is related
to a nested error trace π; it may be generated, for example, by the
proof of the infeasibility of π.

The general notion of an interpolant automaton that we intro-
duce below, however, does not refer to an error trace. It refers to
an arbitrary sequence of predicates I0, I1, . . . , In. Given such a se-
quence, we will associate each predicate Ii with an automaton state
qi. The automaton states are not necessarily pairwise distinct; i.e.,
we may associate two different predicates Ii and Ij with the same
automaton state, and we may associate the same predicate with two
different states (i.e., we may have Ii 6= Ij , qi = qj and we may
have Ii = Ij , qi 6= qj). The non-constructive definition below ac-
commodates a wide range of possible constructions. The definition
of a canonical interpolant automaton in Section 5 is constructive.

Definition 4 (Nested Interpolant Automaton AI). Given a se-
quence of predicates (“interpolants”) I = I0, I1, . . . , In, the
nested interpolant automaton

AI = (QI , 〈δin, δca, δre〉, Qinit
I , Q

fin
I)

is a finite nested word automaton if we can index its set of states
QI with the set of indices of the sequence {0, . . . , n}, i.e.,

QI = {q0, . . . , qn}
and thus associate each interpolant Ii with a state qi, such that the
following three conditions hold.

• The sequence of interpolants is inductive wrt. the triple of
transition relations 〈δin, δca, δre〉, i.e.,

(qi, y:=t , qj) ∈ δin ⇒ postin(Ii, y:=t) ⊆ Ij

(qi, φ , qj) ∈ δin ⇒ postin(Ii, φ) ⊆ Ij

(qi, call p , qj) ∈ δca ⇒ postca(Ii, call p) ⊆ Ij

(qi, qk, return p , qj) ∈ δre ⇒ postre(Ii, Ik, return p) ⊆ Ij
• Each interpolant associated with an initial state is the true

predicate.

qi ∈ Qinit
I ⇒ Ii = >

• Each interpolant associated with a final state is the false predi-
cate.

qi ∈ Qfin
I ⇒ Ii = ⊥

Theorem 4. A nested interpolant automaton AI recognizes a
subset of infeasible nested traces.

L(AI) ∩ L(AΣ) = ∅

Proof. We show by induction on the length of a nested trace π =
(st0, . . . , stn−1,) the following. If q0, . . . , qn is a run of AI for
st0, . . . , stn−1 then ν0, . . . , νn is a run of AΣ only if νi ∈ Ii for
i = 0, . . . , n.

We proof the induction step for the case where the last position
of the sequence is an internal position as follows. Let q0, . . . , qn+1

be a run ofAI for π = (st0, . . . , stn,), let ν0, . . . , νn+1 be a run
ofAΣ for π, let position n be an internal position of π. By induction
hypothesis νn ∈ In. Since (νn, stn, νn+1) ∈ δin, the state νn+1

is in postin(In, stn). The transition relation of AI contains the
triple (qn, stn, qn+1). Hence the inclusion postin(In, stn) ⊆ In+1

is valid. Thus, νn+1 ∈ In+1 holds. The cases where n is a call
position or a return position can be proven analogously.

Assume q0, . . . , qn is an accepting run of AI for a nested
trace π. Therefore In, the interpolant associated to qn, is the false
predicate ⊥, which is not satisfied by any valuation. According to
the preceding inductive argument there is no run ofAΣ for π, hence
π is infeasible.

Nested Interpolant Automata from Floyd-Hoare Style Proofs.
Given a Floyd-Hoare style proof of partial correctness for the pro-
gram P in the form of a sequence of inductive invariant assertions
I = (I`)` (the sequence is indexed by the program locations ` of
P , like in Figure 1), we obtain readily that we can use the control
automaton AP as a nested interpolant automaton AI . In fact, the
conditions in Definition 4 translate exactly the inductiveness of the
invariant assertions in the Floyd-Hoare style proof (as presented,
e.g., in [4]).

Completeness of Nested Interpolant Automata. We may ask
whether the proof rule (1) is still complete if we require that
the nested word automaton A used a proof argument must be the
complement of a nested interpolant automaton. By the discussion
above, we obtain the relative completeness in the same sense as for
the Floyd-Hoare proof rule.

5. Interpolant Automata from Proofs
In this section we will give a constructive proof method for program
correctness. In the first step of the method, an inductive sequence
of Craig interpolants is generated from an infeasibility proof of a
nested error trace (Section 5.3). In the second step, this sequence

is used to construct a nested interpolant automaton that recognizes
traces infeasible for the same reason (Section 5.4). The two steps
are embedded in a counterexample-guided abstraction refinement
scheme (Section 5.5).

Before we present the generation of the inductive sequence of
Craig interpolants, we give the definition of an inductive sequence
of nested interpolants (Section 5.1) and we show how the infeasi-
bility of a nested error trace can be characterized as the satisfiability
of a formula (Section 5.2).

5.1 Inductive Sequence of Nested Interpolants
We generalize the concept of a sequence of interpolants [13] to
account for the nesting structure. The key idea is that on a return
statement the predicate describing the calling context can be com-
bined with the predicate before the return statement that captures
the post-condition of the procedure. This is a necessary prerequi-
site to obtain predicates that only restrict the variables in the current
calling context.

Definition 5 (Inductive Sequence of Nested Interpolants). Given a
nested trace

π = (st0 . . . stn−1,) ,

an inductive sequence of nested interpolants is a sequence of pred-
icates I0, . . . , In such that

• I0 = >,
• In = ⊥,
• For i = 0, . . . , n− 1:

postin(Ii, sti) ⊆ Ii+1 if i is an internal position,
postca(Ii, sti) ⊆ Ii+1 if i is a call position,
postre(Ii, Ik, sti) ⊆ Ii+1 if i is a return position and k i.

Remark. If a nested trace π has an inductive sequence of nested
interpolants, then π must be infeasible. In our setting we are only
interested in the case were π is an infeasible nested error trace.
In Section 5.3 we explain how an inductive sequence of nested
interpolants can be obtained from Craig interpolants in that case.

5.2 Infeasibility Proof for Nested Traces
From now on, we assume that the terms in assignment statements
and the formulas in assume statements are given in some (first- or
higher-order) theory with equality.

For a well-nested trace (π,) we construct a formula in this
theory, called the single static assignment (SSA) for the trace,
which is unsatisfiable if and only if the nested trace is infeasible.
If the theory is decidable this allows us to obtain a proof of infea-
sibility for (π,) automatically, by deciding satisfiability of the
SSA.

The single static assignment contains a fresh logical variable
for each assignment statement in the trace. This allows us to ex-
press these statements by equalities. For recursive programs the
variables of different calling contexts have to be kept separate. We
use the nesting structure to replace each program variable by the
last assigned logical variable that belongs to the same procedure.

Definition 6 (SSA). The single static assignment (SSA) for a well-
nested trace π = (st0, . . . , stn−1,) is the sequence of formulas
ϕ0, . . . , ϕn−1 where ϕi is defined as

• yi = renamei(t) if sti = y:=t ,
• renamei(φ) if sti = φ ,
• xi = renamei(xp) if sti = call p ,
• resip = renamei(res) if sti = return p .

The function renamei replaces every variable v by vj where j =
index(v, i) is the largest index before i in the same calling context

where x is assigned. Formally index(v, 0) = −1 and

index(v, i+1)=


i

if sti = y:=t and v = y,

or sti = return p and v = resp,

or i is call position,
index(v, k) else if k i (i is return position),
index(v, i) else (i is internal position).

The function index is defined recursively and follows the trace
from i backwards to the statement where v is assigned to. The
assignment can be either explicitly by an assignment or implicitly,
e.g., when a variable is used uninitialized in a procedure. If a
variable is used without prior initialization it returns the index of the
procedures call statement and the index −1 in the case where this
procedure is the main procedure of the program. The rules for call,
return, and internal positions ensure that the index of the variable
renamei(y) is in the same procedure as i. To prove the correctness
of our interpolation scheme we need the following properties of the
renaming function.

Lemma 1. The function index in Definition 6 for a well-nested
trace π = (st0 . . . stn−1,) has the following properties:

1. Every variable is assigned before the current position, i.e.,
index(v, i) < i.

2. If k j, and k < i ≤ j, then k ≤ index(v, i), i.e., the variable
is assigned inside the current procedure. This also holds for an
unfinished call, i.e., k ∞ and k < i.

3. If k j, and k < j < i, i.e., position i is after the position a
procedure returns, then either index(v, i) ≥ j or index(v, i) <
k, i.e., the variable was not assigned inside that procedure call.

4. If sti = y:=t then for all j > i: index(y, j) 6= index(y, i),
i.e., later statement will never see the value overwritten by
statement i.

5. If sti = return p and k is the corresponding call position (i.e.
k i) then index(resp, j) 6= index(resp, k) for all j > i, i.e.,
the previous value of the result variable that was overwritten by
the return is not visible after the return.

Proof. 1. This is easily shown by induction over i.
2. Follows by induction and the fact that (a) index(v, k + 1) = k

and (b) there can be no nesting k′ j′ with k′ < k < j′ <
i < j due to proper nesting.

3. Follows by induction. For the induction step recall that there is
no nesting k′ j′ with k ≤ k′ ≤ j < j′ due to proper nesting.

4. By induction: For j = i + 1, we have index(y, i) < i =
index(y, j). Now assume the hypothesis for j > i holds. The
cases index(y, j+ 1) = j > index(y, i) and index(y, j+ 1) =
index(y, j) 6= index(y, i) are obvious. If index(y, j + 1) =
index(y, k) with k j there are two cases. If k > i, then
index(y, k) 6= index(y, i) by induction hypothesis. Otherwise,
k < i < j, hence index(y, k) < k ≤ index(y, i). Since the
trace is well-nested, i must be an internal position, so k = i is
not possible. This shows that index(y, j) 6= index(y, i) for all
j > i.

5. This is analogous to 4.

We can check the feasibility of a nested trace by checking the
satisfiability of its SSA.

Theorem 5. Given the SSA ϕ0, . . . , ϕn−1 for the well-nested trace
π. The trace π is feasible if and only if the conjunction ϕ0 ∧ · · · ∧
ϕn−1 is satisfiable.

Proof. We obtain a run of the data automaton AΣ on the trace
π from a model M of ϕ0 ∧ · · · ∧ ϕn−1 if we set νi(v) to

x<=100

xm:=x+11

call m

x>100

res:=x-10

return m

xm:=resm

call m

x>100

res:=x-10

return m

res:=resm

x≤101∧res6=91)

ϕ0 : x−1≤100

ϕ1 : x1
m=x−1+11

ϕ2 : x2=x1
m

ϕ5 : res5m=res4

ϕ6 : x6
m=res5m

ϕ7 : x7=x6
m

ϕ10 : res10
m =res9

ϕ11 : res11=res10
m

ϕ12 : x−1 ≤ 100 ∧ res11 6= 91

ϕ3 : x2>100

ϕ4 : res4=x2−10

ϕ8 : x7>100

ϕ9 : res9=x7−10

Figure 6. The nested trace π4 (a nested error trace of AP91) and
its SSA.

M(renamei(v)). Vice versa, we obtain a model from a run
ν0, . . . , νn if we assign to vi the value νi+1(v).

Example 4. Consider the nested trace π4 in Figure 6 and its SSA.
The nested trace is infeasible, since the conjunction of the formulas
in the SSA is unsatisfiable. In fact

x7 = x6
m = res5

m = res4 = x2−10 = x1
m−10 = x−1 +1 ≤ 101

together with x7 > 100 implies x7 = 101. This implies

res11 = res10
m = res9 = x7 − 10 = 91,

which contradicts ϕ12.

5.3 Inductive Sequence of Nested Craig Interpolants
In this section we give a method to generate an inductive sequence
of nested interpolants. The method is based on Craig interpolants,
which can be computed automatically from unsatisfiability proofs.

Craig Interpolant. Given two formulas ψ−−− and ψ+++ whose con-
junction is unsatisfiable, a Craig interpolant is a formula ψ such
that

• ψ−−− implies ψ,
• the conjunction ψ ∧ ψ+++ is unsatisfiable, and
• ψ contains only variables that occur in both, ψ−−− and ψ+++.

In the remaining section we assume the SSA is given in a theory
where each pair of formulas ψ−−− and ψ+++ whose conjunction is un-
satisfiable has a Craig interpolant. The concept of Craig interpola-
tion can be lifted to a sequence of formulas whose conjunction is
unsatisfiable [18] and applied to the SSA of an infeasible trace. For
a flat program execution, Craig interpolants derived this way can
be used to generate an inductive sequence of interpolants.

If we apply this method to the SSA of a nested trace, a variable
of the parent context that is set before calling a procedure and read

after the return of the procedure would be allowed to appear in the
Craig interpolants for the called procedure. However, this variable
is not in the scope of the called procedure and leads to interpolants
which are not suitable for a modular analysis. Therefore, we seek
Craig interpolants containing only variables that belong to the cur-
rent calling context.

By moving the instructions of the parent procedure to the end
of the sequence as in [14], it is possible to obtain interpolants that
are local to the current calling context. We additionally require
that the sequence of interpolants is inductive. Therefore, we follow
the basic idea of [14] but compute the interpolants from front
to back, using the previously computed interpolant as summary
that replaces its preceding statements. Instead of conjuncting all
preceding statements of the parent procedure we use the previously
computed interpolant directly preceding the call statement. This
algorithm gives us an inductive sequence of nested interpolants.

Definition 7 (Inductive Sequence of Nested Craig Interpolants).
Given an SSA ϕ0 . . . , ϕn−1 and a nesting relation , an inductive
sequence of nested Craig interpolants is a sequence ψ0 . . . ψn,
where

• ψ0 is >.
• If ψ0, . . . , ψi (i ∈ {0, . . . , n − 1}) are given, we obtain ψi+1

as follows. We define

ψ+++
i+1 =

n−1∧
j=i+1

ϕj ∧
∧
k j,

k<i+1<j 6=∞

(ψk ∧ ϕk),

which is the conjunction of the statements following position
i + 1 and the pre-conditions of the calls which are pending at
position i+ 1, and

ψ−
−−
i+1 =


ψi ∧ ϕi if i is internal position,
ψi ∧ ϕi if i is call position, i ∞,
> if i is call position, i 6 ∞,
ψi ∧ ϕi ∧ ψk ∧ ϕk if i is return position, k i.

Then we obtain ψi+1 as a Craig interpolant of ψ−−−i+1 and ψ+++
i+1.

The following lemma is needed for the correctness of the inter-
polation scheme.

Lemma 2. Given an infeasible well-nested trace

π = (st0 . . . stn−1,)

and its SSA ϕ0, . . . , ϕn−1.

1. For i = 1, . . . , n, the conjunction ψ−−−i ∧ ψ
+++
i in Definition 7 is

unsatisfiable, and therefore the Craig interpolant exists.
2. For i = 0, . . . , n, the interpolant ψi contains only the variables

renamei(v) for program variables v.
3. For i = 0, . . . , n− 1,
ψi ∧ ϕi ⇒ ψi+1 if i is an internal or a call position and
ψi ∧ϕi ∧ψk ∧ϕk ⇒ ψi+1 if i is a return positions and k i.

4. ψn = ⊥.

Proof. 1. We show this by induction over i. For i = 1 the conjunc-
tion ψ−−−1 ∧ψ

+++
1 is equal to ϕ0∧· · ·∧ϕn−1, which is unsatisfiable

by Theorem 5. For the induction step note that the conjunction
ψ−−−i+1 ∧ψ

+++
i+1 has exactly the same conjuncts as ψi ∧ψ+++

i . Since
ψi was obtained as the Craig interpolant of ψ−−−i and ψ+++

i (which
exists by induction hypothesis), the formula ψi ∧ ψ+++

i is unsat-
isfiable.

2. This is also shown by induction. For i = 0 this is obvious
as ψ0 = >. Now assume that ψk contains only the variables

renamek(v) for k ≤ i. All variables appearing in ψi+1 must
also appear in ψ−−−i+1 and ψ+++

i+1.
If sti = y:=t then ψ−−−i+1 contains only renamei(v) and yi. By
definition renamei+1(v) = renamei(v) except for v ≡ y. It
remains to show that the variable renamei(y) does not appear
in ψ+++

i+1. The formula
∧n−1
j=i+1 ϕi contains only renamej(y) for

j > i. Lemma 1.4 ensures renamej(y) 6= renamei(y). The
second conjunction of ψ+++

i+1 contains the variables renamek(v),
and xk for procedure calls k j with k < i + 1 < j < ∞.
Lemma 1.2 ensures index(v, k) < k ≤ index(y, i), hence
renamek(v) 6= renamei(y). Since the input variable x is never
written, x 6≡ y.
If sti = φ , then by the induction hypothesis and the definition
of ϕi, ψ−−−i+1 = ψi ∧ϕi contains only the variables renamei(v).
By definition, renamei+1(v) = renamei(v). Thus, ψi+1 con-
tains only the allowed variables.
If sti = call p is an unfinished call statement, i.e., i ∞,
then ψ−−−i+1 = ψi ∧ ϕi contains the variables renamei(v) and
xi. The formula ψ+++

i contains only variables renamej(v) with
j > i (due to proper nesting there is no call k j with k < i <
j < ∞). By Lemma 1.2 index(v, i) < i ≤ index(v, j), hence
renamei(v) 6= renamej(v). The variable xi = renamei+1(x)
is allowed to appear in ψi+1.
If i is a call position with i 6 ∞, then ψ−−−i+1 = > hence ψi+1

does not contain any variable.
If sti = return p and k i is the corresponding call posi-
tion, then ψ−−−i+1 = ψi ∧ ϕi ∧ ψk ∧ ϕk contains the variables
renamei(v), renamek(v), xk, and resip. It is renamei+1(v) =
renamek(v) except for v ≡ resp and renamei+1(resp) =
resip. It remains to show that renamei(v), renamek(resp),
and xk do not appear in ψ+++

i+1. The formula ψ+++
i+1 contains

renamej(v) for j > i, renamek′(v), and xk
′

for k′ j′ with
k′ < i < j′. By proper nesting k′ < k holds. For j > i
we have index(resp, j) 6= index(resp, k) by Lemma 1.5 and
for k′ < k < j′ Lemma 1.2 gives index(resp, k) ≥ k′ >
index(resp, k

′). Hence renamek(resp) does not appear in ψ+++
i+1.

The indices of the variables xk and renamei(v) are all be-
tween k inclusive and i exclusive. For j > i Lemma 1.3 gives
index(v, j) ≥ i or index(v, j) < k and for k′ < k the index of
renamek′(v) and xk

′
is smaller than k. Therefore, the variables

xk and renamei(v) do not appear in ψ+++
i+1.

3. These implications follow directly from the property ψ−−−i+1 ⇒
ψi+1 of Craig interpolants.

4. Finally, ψn = ⊥ follows from ψ+++
n = >, because ψn ∧ ψ+++

n is
unsatisfiable.

We extend the renaming function to valuations

renamei(ν) = {renamei(v) 7→ ν(v) | v is variable}.

Since the Craig interpolant ψi contains only renamei(v) as vari-
ables, we can associate it with the set of valuations ν such that
renamei(ν) |= ψi.

Theorem 6. Given a well-nested trace π, its SSA ϕ0, . . . , ϕn−1,
and its inductive sequence of nested Craig interpolantsψ0, . . . , ψn,
the sequence of predicates I0, . . . , In with

Ii = {ν | renamei(ν) |= ψi} for i = 0, . . . , n

is an inductive sequence of nested interpolants of π.

Proof. For brevity, we write νi |= ψi for renamei(νi) |= ψi, which
means νi ∈ Ii Similarly, for νi, νj we write νi, νj |= ϕ as short-

I0 : >

I1 : x≤100

I2 : xm≤111 I3 : >

I4 : >

I5 : res≤x− 10I6 : resm≤101

I7 : xm≤101 I8 : >

I9 : x≥101

I10 : x≥101 ∧ res=x− 10I11 : resm=91

I12 : res=91

I13 : ⊥

x<=100

xm:=x+11

call m

x>100

res:=x-10

return m

xm:=resm

call m

x>100

res:=x-10

return m

res:=resm

x≤101∧res6=91)

Figure 7. Inductive sequence of nested interpolants I =
(I0, . . . , I13), obtained from the Craig interpolants of the SSA in
Figure 6. For better legibility the sequences are depicted in an in-
terleaved arrangement.

hand for
renamei(νi) ∪ renamej(νj) |= ϕ .

This is well-defined if νi(v) = νj(v) whenever renamei(v) =
renamej(v).

• sti = y:=t : Given νi+1 ∈ postin(Ii, sti), by definition there is
νi ∈ Ii (hence νi |= ψi), such that νi+1 = νi ⊕ {y 7→ νi(t)}.
Since ϕi is yi = renamei(t), we get νi, νi+1 |= ϕi. From the
previous lemma we have ψi ∧ ϕi ⇒ ψi+1, hence νi, νi+1 |=
ψi+1. The latter formula contains only variables renamei+1(v),
hence νi+1 ∈ Ii+1. This shows postin(Ii, sti) ⊆ Ii+1.
• sti = φ : Let νi+1 ∈ postin(Ii, sti), hence νi+1 ∈ Ii and
νi+1 |= φ. Since renamei(v) = renamei+1(v) for all variables
v and ϕi is renamei(φ), this implies νi+1 |= ψi ∧ ϕi and with
the previous lemma νi+1 |= ψi+1. Hence, νi+1 ∈ Ii+1.
• sti = call p : Let νi+1 ∈ postca(Ii, sti). By definition there

is νi ∈ Ii and νi+1(x) = νi(xp). By definition of ϕi, this
implies νi, νi+1 |= ϕi. With νi |= ψi and ψi ∧ϕi ⇒ ψi+1 this
implies νi, νi+1 |= ψi+1. Thus, νi+1 ∈ ψi+1.
• sti = return p : Then i is a return position and k i. Let
νi+1 ∈ postre(Ii, Ik, sti). Then there is νi ∈ Ii, νk ∈ Ik
with νi(x) = νk(xp) and νi+1 = νk ⊕ {resp = νi(res)}.
Since ϕi is resip = renamei(res), this implies νi, νi+1 |= ϕi.
Furthermore νi |= ψi and νk |= ψk and νk, νi |= ϕk, since ϕk
is xk = renamek(x) and renamei(x) = xk. With the previous
lemma it follows νk, νi, νi+1 |= ψi+1. Hence, νi+1 ∈ Ii+1.

q0

q1

q2 q3

q4

q5q6

q7 q8

q9

q10q11

q12

q13

x<=100

xm:=x+11

call m

x>100

res:=x-10

return m ↑q2

xm:=resm

call m

x>100

res:=x-10

return m ↑q7

res:=resm

x≤101∧res6=91)

x<=100

x<=100

return m ↑q7

return m ↑q2

Figure 8. Canonical interpolant automaton Aπ4
I for the inductive

sequence of nested interpolants depicted in Figure 7. For better leg-
ibility we omitted the edges (q8, x>100 , q4), (q9, res:=x-10 , q5),
(q10, q2, return m , q6), which are not needed to prove correctness
of P91.

Example 5. Figure 7 shows the sequence of nested interpolants
for the nested trace π depicted in Figure 6. The interpolants were
computed as Craig interpolants.

5.4 Canonical Interpolant Automaton
We use an inductive sequence of nested interpolants for a nested
error trace π to construct a nested interpolant automaton. The
following construction accepts π and other traces that are infeasible
for the same reason as π.

Definition 8 (Canonical Interpolant AutomatonAπI). Given an in-
ductive sequence of nested interpolants I = I0, I1, . . . , In of an
infeasible error trace π = (st0 . . . stn−1,) along the sequence of
locations `0, . . . , `n (the run of the program automaton), we intro-
duce pairwise different states q0, . . . , qn and define the canonical
interpolant automaton AπI for π and I as follows.

AπI = 〈Q, 〈δin, δca, δre〉, Qinit, Qfin〉
• QI = {q0, . . . , qn}

• δin = {(qi, stj , qj+1) | j is an internal position,
i, j = 0, . . . , n−1, j ≤ i, `i = `j , postin(Ii, stj) ⊆ Ij+1}

δca = {(qi, stj , qj+1) | j is a call position,
i, j = 0, . . . , n−1, j ≤ i, `i = `j , postca(Ii, stj) ⊆ Ij+1}

δre = {(qi, qk, stj , qj+1) | j is a return position, k j
i, j = 0, . . . , n−1, j ≤ i, `i = `j , postre(Ii, Ik, stj) ⊆ Ij+1}
• Qinit

I = {q0}

• Qfin
I = {qn}

q0 q1 q2 q3x>100 res:=x-10 x≤101∧res6=91)

any

I0 :

>
I1 :

x≥101

I2 :

x≥101 ∧
res = x−10

I3 :

⊥

Figure 9. Interpolant automaton Aπ3
I that accepts all well-nested

traces with the suffix x>100 . res:=x-10 . x≤101∧res6=91) .
In combination with the interpolant automata Aπ4

I this automaton
is sufficient to prove correctness of the program P91 with our proof
rule.

The canonical interpolant automaton AπI accepts the nested er-
ror trace π. This follows from the definition of an inductive se-
quence of nested interpolants. In general AπI recognizes an infinite
set of traces. In a sense, AπI accepts exactly the traces that are in-
feasible for the same reason as π. More precisely, in order to prove
the infeasibility of a trace accepted by AπI , we can use the same
sequence of nested interpolants (up to repetition of subsequences)
as in the proof of infeasibility of π.

For j = i the conditions in δin, δca, and δre hold by Defi-
nition 5. Thus, after having generated the inductive sequence of
nested interpolants I (for the proof of the infeasibility of the trace
π), one needs additional theorem prover calls only for each in-
clusion postin(Ii, stj+1) ⊆ Ii+1, postca(Ii, stj+1) ⊆ Ii+1, resp.
postre(Ii, Ik, stj+1) ⊆ Ii+1 where j < i and `i = `j . Thus, the
number of additional theorem prover calls is bounded by the num-
ber of repeated locations in the sequence of locations along the er-
ror trace π.

Example 6. Figure 8 shows the canonical interpolant automaton
for the trace π in Figure 6 and its inductive sequence of nested
interpolants in Figure 7.

The interpolant automaton is not sufficient to prove the correct-
ness of the program using proof rule (1). The automaton Aπ4

I does
not accept the nested error trace π3 from Figure 4. Hence, for the
complement automaton Aπ4

I the precondition of proof rule (1)

L(Aπ4
I) ∩ L(AP) = ∅

does not hold.
Figure 9 shows a second interpolant automaton Aπ3

I that ac-
cepts π3 and infeasible nested traces similar to π3. The product
automaton of the complemented interpolant automata Aπ4

I ∩ A
π3
I

still recognizes a superset of feasible traces

L(Aπ4
I ∩ A

π3
I) ⊇ L(AΣ).

It can be mechanically checked that

L(AπI ∩ A
π3
I) ∩ L(AP91) = ∅

which proves the correctness of P91 with proof rule (1).

5.5 Counterexample-Guided Abstraction Refinement
The example of the last section motivates the iterated refinement
scheme depicted in Figure 10, similar to the classical check-
analyze-refine loop [5, 10].

We start with a coarse abstractionA of the data automatonAΣ,
e.g., the automaton that accepts any nested trace. If the abstraction
is not a proof for correctness, it accepts a nested error trace, say π.
We check whether π is infeasible. If this is the case, we obtain a
nested interpolant automaton AI that accepts π. This automaton
can be the canonical interpolant automaton AπI . We refine our

abstraction by

A := A ∩AI
and repeat the loop with the new abstraction.

If we construct a deterministic interpolant automatonAI , com-
plementing the automaton boils down to inverting the set of fi-
nal states. The intersection of the program automaton and the in-
terpolant automaton can be computed by unfolding the program
automaton, annotating the nodes with the interpolants of the in-
terpolant automaton and merging nodes with the location and
same interpolant. This is essentially an extension of the algorithm
from [19] to recursive programs.

recursive program P

P is correct P is incorrect

L(A) ∩ L(AP) = ∅ ? π ∈ L(AΣ) ?

no

return nested error trace π
such that

π ∈ L(A) ∩ L(AP)

no

return refined abstractionA := A ∩AI
where

AI is a nested interpolant automaton
such that

π ∈ L(AI)

yes yes

start withA
such that

L(A) ⊇ L(AΣ)

Figure 10. Counterexample-guided abstraction refinement scheme
that exploits proof rule (1). If L(A) ⊇ L(AΣ) and L(A) ∩
L(AP) = ∅ then program P is correct.

6. Conclusion
In this paper, we have explored the potential of the theory of nested
words as a foundation for correctness proofs for the general class
of recursive procedures. Our conceptual contribution is a simple
framework that allows us to shine a new light on classical concepts
such as Floyd/Hoare proofs and predicate abstraction for recursive
programs. Our technical contribution is to give, to our knowledge
for the first time, a principled method that constructs an abstract
proof for recursive programs from interpolants (avoiding the con-
struction of the abstract transformer). We have used nested words
to formalize the concept of inductive sequences of interpolants for
traces of recursive programs. The construction of nested word au-
tomata from inductive sequences interpolants is interesting because
it avoids the construction of the abstract transformer. As pointed out
in [19], the interpolation-based proof method can be made to scale
if one exploits the modular structure of procedural programs (i.e.,
using procedure summaries). Our work provides the foundation to
explore different realizations of this approach.

Acknowledgments
We thank Neil Jones and Domagoj Babić for comments on the pre-
sentation of this paper. This work was partly supported in part by
the German Research Foundation (DFG) as part of the Transre-
gional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS).

References
[1] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested

calls and returns. In TACAS ’04, pages 467–481. Springer, 2004.

[2] R. Alur and P. Madhusudan. Adding nesting structure to words. In
DLT ’06, pages 1–13. Springer, 2006.

[3] R. Alur and P. Madhusudan. Adding nesting structure to words.
JACM, 56(3), 2009.

[4] K.-R. Apt, F. de Boer, and E.-R. Olderog. Verification of sequential
and concurrent programs. Third, extended edition. Springer, 2009.

[5] T. Ball and S. K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL ’02, pages 1–3. ACM, 2002.

[6] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
FMCO ’05, pages 364–387. Springer, 2005.

[7] N. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs
from tests. In ISSTA ’08, pages 3–14. ACM, 2008.

[8] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing
abstractions. In FSEN ’07, pages 17–32. Springer, 2007.

[9] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. IEEE Trans. Software Eng.,
30(6):388–402, 2004.

[10] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV ’00, pages
154–169. Springer, 2000.

[11] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with
Craig interpolation and symbolic pushdown systems. JSAT, 5:27–56,
June 2008. Special Issue on Constraints to Formal Verification.

[12] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani.
Automatically refining abstract interpretations. In TACAS ’08, pages
443–458. Springer, 2008.

[13] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace
abstraction. In SAS ’09, pages 69–85. Springer, 2009.

[14] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan.
Abstractions from proofs. In POPL ’04, pages 232–244. ACM,
2004.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL ’02, pages 58–70. ACM, 2002.

[16] F. Ivancic, I. Shlyakhter, A. Gupta, and M. K. Ganai. Model checking
C programs using F-SOFT. In ICCD ’05, pages 297–308. IEEE
Computer Society, 2005.

[17] R. Jhala and K. L. McMillan. Interpolant-based transition relation
approximation. In CAV ’05, pages 39–51. Springer, 2005.

[18] R. Jhala and K. L. McMillan. A practical and complete approach to
predicate refinement. In TACAS ’06, pages 459–473. Springer, 2006.

[19] K. L. McMillan. Lazy abstraction with interpolants. In CAV ’06,
pages 123–136. Springer, 2006.

[20] A. Podelski and A. Rybalchenko. ARMC: The logical choice for
software model checking with abstraction refinement. In PADL ’07,
pages 245–259. Springer, 2007.

[21] T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL ’95, pages 49–61. ACM,
1995.

	Introduction
	Preliminaries
	Recursive Programs
	Nested Words

	An NWA View of Program Correctness
	An NWA characterization of Program Correctness
	Proof Rule Based on Finite NWA
	Predicate Abstraction

	Nested Interpolant Automata
	Interpolant Automata from Proofs
	Inductive Sequence of Nested Interpolants
	Infeasibility Proof for Nested Traces
	Inductive Sequence of Nested Craig Interpolants
	Canonical Interpolant Automaton
	Counterexample-Guided Abstraction Refinement

	Conclusion

