SMTInterpol: an Interpolating SMT Solver

Jiirgen Christ, Jochen Hoenicke, and Alexander Nutz*

Department of Computer Science,
University of Freiburg
{christj,hoenicke,nutz}@informatik.uni-freiburg.de

Abstract. Craig interpolation is an active research topic and has be-
come a powerful technique in verification. We present SMTInterpol, an
interpolating SMT solver for the quantifier-free fragment of the combi-
nation of the theory of uninterpreted functions and the theory of linear
arithmetic over integers and reals. SMTInterpol is SMTLIB 2 compliant
and available under an open source software license (LGPL v3).

1 Introduction

For many years, satisfiability modulo theories (SMT) solvers have been used
by verification tools. Recently, many verification tools use Craig interpolants to
create abstractions from state spaces or derive loop invariants. We present SMT-
Interpol, an SMT solver able to produce Craig interpolants for the quantifier-
free fragment of the (combination of the) theories of uninterpreted functions,
and linear arithmetic over integers and reals, i.e., the SMTLIB logics QF _UF,
QF_LIA, QF _LRA, QF _UFLIA, and QF_UFLRA. It is SMTLIB 2 compliant, im-
plemented in Java, and available under an open source license (LGPL v3) from its
website http://ultimate.informatik.uni-freiburg.de/smtinterpol/. The
solver is proof producing and can extract an unsatisfiable core, or inductive
sequences of Craig interpolants [16] from its resolution proofs. Furthermore, in-
terpolants for different partitions can be generated as needed for model checking
of recursive programs [14].

SMTInterpol participated in the main and in the application track of the
SMT-COMP 2011 [1], the annual competition for SMT solvers. In the logics
QF_UFLIA and QF_UFLRA, SMTInterpol could solve as many problems as
the winning solver. This shows that, while not (yet) as fast as other solvers,
SMTInterpol provides decent performance.

Related Work Other interpolating solvers that read SMTLIB are MathSAT [13],
Princess [4], OpenSMT [5], and the interpolating version of Z3 [17]. OpenSMT
does not support linear integer arithmetic. MathSAT, Princess, and interpolating
Z3 (iZ3) are evaluated in Section 5.

* This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS)

This is the author’s version of the work published in Model Checking
Software, LNCS 7385, pages 248-254. Springer, 2012. The orginal pub-
lication is available at
www.springerlink.com/index/10.1007/978-3-642-31759-0_19

http://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://www.springerlink.com/index/10.1007/978-3-642-31759-0_19
http://dx.doi.org/10.1007/978-3-642-31759-0_19

2 Jirgen Christ, Jochen Hoenicke, and Alexander Nutz

Besides the tools mentioned above, there are other tools that do not read
SMTLIB but are able to produce interpolants. Foci [15] can produce interpolants
for the combination of uninterpreted functions (EUF) with linear real arithmetic
(LRA) or integer difference logic, CSISat [3] supports the combination of EUF
and LRA but is unsound for linear integer arithmetic (LIA). CLPProver [20]
only supports the conjunctive fragment of EUF and LRA. In contrast to these
three solvers, SMTInterpol supports the combination of EUF and LIA.

2 Architecture of SMTInterpol

In this section, we will shortly explain the different components of SMTInterpol
and the techniques implemented by these components.

User Interaction SMTInterpol supports the SMTLIB [2] script language and
provides a Java API modeled after the commands of this language through its
Script interface. Users can either give commands via an SMTLIB file or the
standard input channel of the solver, or use the API.

CNF Conversion Every asserted formula gets converted into Conjunctive Nor-
mal Form (CNF), which is a conjunction of disjunctions of literals. SMTInterpol
uses a variant of the encoding proposed by Plaisted and Greenbaum [19] to con-
vert a formula into CNF.

DPLL Core SMTInterpol follows the DPLL(T) [12] paradigm. The DPLL en-
gine serves as a truth enumerator and communicates with a set of satellite the-
ories.

Satellite Theories SMTInterpol currently contains two satellite solvers: one
for uninterpreted functions and one for linear arithmetic. The solver for the the-
ory of uninterpreted functions is based on congruence closure [9]. The solver for
linear arithmetic implements a variant of simplex [11]. Additionally, it uses the
“cuts from proofs” [10] technique to deal with integer or mixed integer problems.
Theories are combined using model-based theory combination [18].

Models and Proofs SMTInterpol can produce models for satisfiable formulas
and resolution proofs for unsatisfiable formulas. From these proofs, SMTInterpol
can extract unsatisfiable cores or Craig interpolants.

Interpolants The architecture of the interpolation engine follows roughly the
DPLL(T) paradigm: A core interpolator produces partial interpolants for the
resolution steps while theory specific interpolators [15,6] produce partial inter-
polants for 7-lemmas. In the presence of mized literals, i.e., literals that do not
occur in any block of the interpolation problem, special mized literal interpola-
tors combine partial interpolants.

3 How To Use SMTInterpol

SMTInterpol is written in Java and runs on any computer with a recent Java
installation. After downloading, it can be started from the command line with
java -jar smtinterpol.jar and reads input in the SMTLIB [2] format. We

SMTInterpol: an Interpolating SMT Solver 3

refer to the SMTLIB tutorial [7] for more information on the standard and the
logical foundations.

SMTInterpol also provides a Java API', which allows it to be integrated
as a library inside other tools. The API reflects the commands provided by
the SMTLIB standard, and it includes a minimal interface for the construc-
tion of terms and sorts. During term construction SMTInterpol checks for well-
typedness and reports type errors.

4 Interpolation for SMTLIB Logics

Given a pair (¢1,¢2) of formulas such that ¢; A ¢o is unsatisfiable, a Craig
interpolant [8] is a formula 1 that (1) is implied by ¢1, (2) is inconsistent with
¢2, and (3) only contains symbols shared between ¢; and ¢,. Given a sequence
of formulas ¢1,...,d,, an inductive sequence of interpolants (in the sense of
McMillan [16]) is a sequence of formulas)y, ..., 1, such that (1) ¥y = T, (2)
Y = L, (3) ¥i—1 A ¢; implies 1p; for 0 < ¢ < n, and (4) ¢p; for 0 < i < n
contains only symbols shared between the first ¢ formulas and the remaining
n — 1 formulas.

SMTInterpol produces inductive sequences of interpolants for the SMTLIB
logics QF _UF, QF _LRA, QF_UFLRA, QF_LIA, and QF _UFLIA. Since the inte-
ger logics defined in the SMTLIB standard are not closed under interpolation,
SMTInterpol extends these logics with the division and modulo operators with
constant divisor. With these two additional operators it is possible to express
the floor and ceil operators used in other interpolation algorithms [13].

To support interpolation, SMTInterpol extends the SMTLIB standard with
the get-interpolants command. This command expects as parameters at least
two names of named top-level formulas, i.e., formulas that were asserted using
the command (assert (! formula :named Name)), or the conjunction of such
names. If more than two parameters are supplied, an inductive sequence of in-
terpolants is computed. The command can be used after a satisfiability check
returned unsat and before a pop command changed the assertion stack of the
solver. Interpolant computation can be redone with a different partition by call-
ing get-interpolants again with different arguments. This is needed, e.g., to
compute nested interpolants for recursive programs [14]. Since SMTInterpol ex-
tracts interpolants from proofs, users have to set the option :produce-proofs
to true to enable interpolant computation.

Figure 1 shows how to compute interpolants with SMTInterpol. The left-
hand side of the figure shows the API usage and the right-hand side shows
the corresponding SMTLIB 2 commands. The example asserts the formula = >
yAzx = 0Ay > 0, checks satisfiability, computes an inductive sequence of
interpolants between the individual conjuncts, and an interpolant between x = 0
and x >y Ay >0.

The interpolation procedure for mixed literals (literals containing symbols of
more than one interpolation block) is loosely based on the method of Yorsh et

! The documentation for the Java API is available at the website

4 Jirgen Christ, Jochen Hoenicke, and Alexander Nutz

Script s = new SMTInterpol(Logger.getRootLogger(), true);

s.setOption(":produce-proofs", true); (set-option :produce-proofs true)
s.setLogic(Logics.QF_LIA); (set-logic QF_LIA)
s.declareFun("x", new Sort[0], s.sort("Int")); (declare-fun x () Int)
s.declareFun("y", new Sort[0], s.sort("Int")); (declare-fun y () Int)
s.assertTerm(s.annotate ((assert (!
s.term(">",s.term("x"), s.term("y")), oG xy)
new Annotation(":named", "phi_1"))); :named phi_1))
s.assertTerm(s.annotate((assert (
s.term("=", s.term("x"), s.numeral("0")), (= x 0)
new Annotation(":named", "phi_2"))); :named phi_2))
s.assertTerm(s.annotate((assert (
s.term(">", s.term("y"), s.numeral("0")), Cyo
new Annotation(":named", "phi_3"))); :named phi_3))
if (s.checkSat() == UNSAT) { (check-sat)
Term[] interpolants;
interpolants = s.getInterpolants(new Term[] { (get-interpolants
s.term("phi_1"), phi_1
s.term("phi_2"), phi_2
s.term("phi_3") }); phi_3)
. /* Do something ... */
interpolants = s.getInterpolants(new Term[] { (get-interpolants
s.term("phi_2"), phi_2
s.term("and", s.term("phi_1"), s.term("phi_3")) (and phi_1 phi_3))
});
. /* Do something ... */
}

Fig. 1. Two different ways to compute Craig interpolants using SMTInterpol. The left-
hand side shows the Java code using the Script interface. The right-hand side shows
the corresponding SMTLIB script.

al [21]. The basic idea of the approach used in SMTInterpol is to virtually purify
each mixed literal using an auxiliary variable, to restrict the places where the
variable may occur in partial interpolants, and to use special resolution rules to
eliminate the variable when the mixed literal is used as a pivot. In essence, for
convex theories, this approach can be seen as a lazy version of the method of
Yorsh et al. The approach also works for non-convex theories using disjunctions
in the interpolants. The technical details are yet to be published and out of the
scope of this paper.

5 Experiments

SMTInterpol participated in the SMT-COMP [1] 2011, the annual competition
for SMT solvers. While SMTInterpol is not yet as good as the state-of-the-art
solvers Z3 and MathSAT, it can still solve most of the problems in the compe-
tition. We compared the interpolation engine in SMTInterpol to MathSAT [13]
and interpolating Z3 on a set of benchmarks provided by McMillan [17]. The
original benchmark set was converted to SMTLIB 2 format. We did not consider
non-SMTLIB solvers. Table 1 compares the runtime of SMTInterpol, MathSAT,
and iZ3 on a standard laptop?. We restricted the comparison to these solvers
since they were used in the original paper, and are, to our knowledge, the only
solvers that can handle these benchmarks. While Princess supports QF _UFLIA,

2 Running a 64-bit Linux on an Intel Core2 Duo 2.4GHz with 4 GB of RAM

SMTInterpol: an Interpolating SMT Solver 5

SMITnterpol | ansat| 23
Solving [Interpol.
fdc_1 28.61s| 0.13s] 17.53s] 4.79s SMT- |Math-| |Prin-
fdc_2 34.26s| 0.11s| 14.01s] 3.72s Interpol| SAT |iZ3| cess
fdc_3 34.87s| 0.10s 15.53 s| 4.28 s uf001 ok ok |ok| ok
mouserA_1 2.63s| 0.04s 0.54 8| 0.16 s uf002 ok ok |ok]| (ok

(ok)
mouserA_2|| 2.97s| 0.02s 0.92s| 0.27s lia001 ok NA |ok| (ok)
mouserA_3|| 4.89s| 0.02s 0.79 s/ 0.28 s uflia001 ok NA | ok | (ok)
mouserB_1{{105.33 s| 0.15s| 104.58 s{12.20 s uflia002 ok NA | ok | (ok)

(ok)
(ok)

mouserB_2|| 92.28 s| 0.08 s| 59.41 s|16.63 s uflia003 ok NA | ok
mouserB_3(/103.32 s| 0.20s| 64.35 s|17.68 s uflia004 ok NA | ok
ndisprot_1 5.75s| 0.20s 1.34s| 0.50 s uflra001 ok NA |NA| NA
ndisprot_2 || 29.84 s| 2.72s error| 6.68 s uflra002 ok NA |NA| NA

serial_1 32.03s| 0.01s 7.41 8| 3.72s uflra003 ok NA |NA| NA
serial_2 27.23 s 0.02 s 6.41 s| 2.47 s
wmm_1 1.45s| 0.03s 0.26 s| 0.21 s

Table 1. Comparison between SMTInterpol, MathSAT, and interpolating Z3 (iZ3) on
the benchmark suite from McMillan [17], and some small benchmarks. (ok) denotes
that the solver produced a quantified interpolant, NA denotes that the solver does not
support the logic used in this benchmark.

it crashes with a stack overflow on these benchmarks. For SMTInterpol we dis-
tinguish between the time for solving and the time for interpolation. While SMT-
Interpol is not as fast as the other two solvers, it can produce interpolants for
all these problems while MathSAT produces an error on ndisprot_2. The exam-
ple also shows that computing interpolants is usually much faster than solving,
which is consistent with McMillan’s observation [17].

Additionally, some small benchmarks for the interpolation of reals, inte-
gers, and uninterpreted functions are published at the website of SMTInterpol.
OpenSMT, FOCI, CLPProver, and CSISat do not support most of the theories
used in these benchmarks, MathSAT does not fully support interpolation for
linear arithmetic, interpolating Z3 and Princess do not support linear real arith-
metic benchmarks, while SMTInterpol is able to produce interpolants for all of
them.

6 Future Work

We plan to extend the solver to more expressive logics containing quantifiers
and arrays. Additionally, the computation of nested interpolants [14] should be
directly supported by a modified version of the get-interpolants command.

7 Conclusion

We have presented SMTInterpol, an interpolating SMT solver that is complete
for the combination of the theories of uninterpreted functions and linear arith-

Jirgen Christ, Jochen Hoenicke, and Alexander Nutz

metic. Thus, SMTInterpol can produce interpolants in some theory combinations
not supported by any other solver. Since SMTInterpol is shipped under LGPL
v3 and is written in a platform independent language, it is ideal to be integrated
into model checkers.

References

o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

Barrett, C., de Moura, L., Stump, A.: SMT-COMP. In: CAV (2005)

Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: 2.0. In: SMT (2010)
Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for la+euf. In: CAV.
pp. 304-308 (2008)

Brillout, A., Kroening, D., Riimmer, P., Wahl, T.: An interpolating sequent calcu-
lus for quantifier-free Presburger arithmetic. In: IJCAR. pp. 384-399 (2010)
Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
TACAS. pp. 150-153 (2010)

Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satisfi-
ability modulo theories. In: TACAS. pp. 397-412 (2008)

Cok, D.R.: j]SMTLIB: Tutorial, validation and adapter tools for SMT-LIBv2. In:
NASA Formal Methods. pp. 480-486 (2011)

Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22(3), 269-285 (1957)

Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365-473 (2005)

Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: A complete and practical tech-
nique for solving linear inequalities over integers. In: CAV. pp. 233-247 (2009)
Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: CAV.
pp. 81-94 (2006)

Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
Fast decision procedures. In: CAV. pp. 175-188 (2004)

Griggio, A., Le, T.T.H., Sebastiani, R.: Efficient interpolant generation in satisfi-
ability modulo linear integer arithmetic. In: TACAS. pp. 143-157 (2011)
Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL (2010)
McMillan, K.L.: An interpolating theorem prover. In: TACAS. pp. 16-30 (2004)
McMillan, K.L.: Lazy abstraction with interpolants. In: CAV. pp. 123-136 (2006)
McMillan, K.L.: Interpolants from Z3 proofs. In: FMCAD (2012)

de Moura, L., Bjgrner, N.: Model-based theory combination. Electr. Notes Theor.
Comput. Sci. 198(2), 37-49 (2008)

Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293-304 (1986)

Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: VMCAL pp. 346-362 (2007)

Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
CADE. pp. 353-368 (2005)

	SMTInterpol: an Interpolating SMT Solver

